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Abstract—In the past, spectrum-based fault localization
(SBFL) techniques have been developed to pinpoint a fault
location in a program given a set of failing and successful test
executions. Most of the algorithms use similarity coefficients and
have only been evaluated on established but small benchmark
programs from the Software-artifact Infrastructure Repository
(SIR). In this paper, we evaluate the feasibility of applying 33
state-of-the-art SBFL techniques to a large real-world project,
namely ASPECTJ. From an initial set of 350 faulty version from
the iBugs repository of ASPECTJ we manually classified 88 bugs
where SBFL techniques are suitable. Notably, only 11 bugs of
these bugs can be found after examining the 1000 most suspicious
lines and on average 250 source code files need to be inspected per
bug. Based on these results, the study showcases the limitations
of current SBFL techniques on a larger program.

I. INTRODUCTION

Software developers spend a large proportion of their time
in finding and removing faults [9], [20], [26], [27]. Several
techniques [38] pursue improving the efficiency of debugging
processes. Among them, Spectrum-Based Fault Localization
(SBFL) [20] aims at localizing and ranking code elements
suspected to cause failing test cases, thus directing the de-
veloper towards likely bug locations. The suspiciousness of
a code element is determined as a function of the number
of successful and failing test cases that executed that code
element. Intuitively, high involvement with failing test cases
as well as low involvement with successful ones push up
suspiciousness. Starting with TARANTULA [20], a variety
of SBFL approaches with different suspiciousness ranking
metrics have been proposed. Naish et al. [30] compared 33
SBFL approaches based on a simplified single-bug application
model and Xie et al. [41] provide a theoretical evaluation.
Most approaches in this area [1], [2], [14], [4], [20], [19],
[28], [27], [29], [40], [39], [42] have been evaluated based
on analytic effectiveness metrics computed on a set of small
benchmarks from the Software-artifact Infrastructure Reposi-
tory (SIR) [12]. Just recently, an evaluations [25], [34] with
medium-sized programs via the Defects4J benchmark [21] has
been made available.

However, despite the results reported on small and medium-
size benchmarks, SBFL’s practical effectiveness is controver-
sial [24], [33], [37]. As an example, Parnin and Orso [33]

provide empirical evidence that SBFL techniques assume
idealized behaviors from which real developers often divert.

Consequently, in this paper we evaluate 33 SBFL techniques
on a larger-scale application, namely ASPECTJ [13], finding
a poor effectiveness of the state-of-the-art SBFL approaches.

ASPECTJ(∼500kLoc) has been used by Dallmeier and Zim-
mermann [10] to extract a benchmark suite of real-world bugs
(iBugs) that were semi-automatically mined from the project
history and thus provides an ideal foundation for this study. For
each bug in this benchmark suite, we manually classified the
associated change set of the version control system to identify
the real fault location. We executed all the available test cases
for each bug and recorded a line hit-spectra to perform SBFL
on. The classified faults served as oracle to measure the SBFL
performance using different effectiveness metrics.

SBFL techniques are usually evaluated with metrics like
proportional Wasted Effort (WE) or Proportion of Bugs Lo-
calized (PBL) [1], [6], [14], [19], [25], [28], [27], [42], which
are based on the percentage of code that is or needs to be
inspected. Since Parnin and Orso [33] already pointed out
the inadequacy of these metrics when dealing with larger-
scale programs, we use the absolute Wasted Effort and the
alternative metric Hit@X [29] that limits the reported sus-
pected elements to a number X and reports the number of
bugs that can be found by inspecting these X elements.
Lucia et al. [29] argue that for larger projects the likelihood
of multiple elements ranked with the same suspiciousness
increases. Consequently, for these elements, the inspection
ordering becomes vague. Furthermore, Parnin and Orso [33]
point out that developers do not follow the list of suspicious
elements sequentially. Instead, when inspecting a line of code
they also inspect other related lines in the same file or in
related classes, usually following element definition chains.
Inspired by these two observations, we propose two novel
metrics: Area Between Curves (ABC) and Number of Files
Inspected (NFI). The former analyzes for the metrics WE and
PBL the best and the worst case, and reports the size of the
area between these curves. The latter quantifies the number of
files that needs to be inspected by developers before finding a
real bug.



In summary, the main contributions of this paper are:
• We perform a manual fault classification of real-world

bugs for the ASPECTJ project to generate a publicly
available benchmark for SBFL approaches.

• We evaluate and compare the effectiveness of 33 SBFL
approaches on ASPECTJ, showing the limitations of these
approaches on a large program.

• We propose two new metrics for understanding and
comparing the effectiveness of SBFL techniques.

II. BACKGROUND AND RELATED WORK

A. Spectrum-based Fault Localization (SBFL)

In software systems, the faulty components that need to
be localized can be of any abstraction level, e.g. statements,
code lines, blocks, methods, classes, or packages. Current
research primarily focuses on the statement level, but there
are studies examining the capabilities of SBFL for other
abstraction levels [3], [8]. To obtain the involvement of low-
level software elements like a code line, various spectra types,
such as branch count/hit spectra, path count/hit spectra or data-
dependence count/hit spectra [15], can be used. To locate a
fault, SBFL assigns a suspiciousness score to each spectra
element. This score is calculated by counting the number of
passed/failed involvements/non-involvements of each spectra
element in the test suite and combining these four numbers
using a formula, which is henceforth called ranking metric
[38]. Adapting Abreu et al. [1], the four numbers are denoted
as 〈nnp, nnf , nip, nif 〉 where the first index represents the
involvement (i) or non-involvement (n) of the spectra element
and the second index represents passing (p) or failing (f)
executions.

After a suspiciousness score has been assigned to each
spectra element using a ranking metric, the statements can be
ranked in descending order by their suspiciousness. Current
research assumes that a developer can then find the fault
by going through the list element by element, starting with
the most suspicious element. Prominent ranking metrics are
TARANTULA[19] and OCHIAI[2]:

Tarantula :=

nif
nif+nnf

nif
nif+nnf

+
nip

nip+nnp

, (1)

Ochiai :=
nif√

(nif+nnf )(nif+nip)
(2)

For details of the other 31 metrics we refer to Naish et al. [30].

B. General Definitions

This section introduces common definitions [1], [3], [11],
[29], [38] required to define performance metrics to compare
SBFL metrics. An SBFL metric R (eg. TARANTULA or
OCHIAI) is a function that assigns a suspiciousness score to
each spectra element ci ∈ C, which is denoted as suspR(ci).
C is the set of all spectra elements. The set of faulty spectra
elements (eg. faulty statements, code lines or methods) is a
subset of all spectra elements F ⊆ C.
Prominent Bug: Faulty programs may contain multiple bugs.
DiGiuseppe and Jones [11] have shown that multiple faults

interfere with each other such that some faults cannot be
localized using SBFL if others are present at the same time.
To overcome this limitation, they propose to iteratively run
SBFL: locate the first fault, fix the fault, and then start over
again until all bugs are fixed. With this approach, the first
bug that is found is the most important bug and is denoted as
prominent bug fpro ∈ F :

∀fj ∈ F \ {fpro} : suspR(fpro) ≥ suspR(fj) (3)

Rank: The effectiveness of SBFL algorithms is evaluated by
examining the ranking position of the faulty element in the
final ranking. However, the ranking position may not be deter-
ministic, as it can occur that multiple ranked elements share
the exact same suspiciousness. As SBFL has no additional
information on how to rank draws, all elements with the same
suspiciousness are randomly ordered. If there are multiple
elements with the same suspiciousness as the faulty element,
the final ranking thus has a best case and a worst case. In the
best case, the faulty element is the first element of all elements
with the same suspiciousness:

best rankR(cj) = |{ci ∈ C | susR(ci) > susR(cj)}|+ 1
(4)

In the worst case, the faulty element is the last element of all
elements with the same suspiciousness:

worst rankR(cj) = |{ci ∈ C | susR(ci) ≥ susR(cj)}|+ 1
(5)

As the random order follows a uniform distribution, the
average case is defined by:

avg rankR(cj) =
1
2 (best rankR(cj) + worst rankR(cj))

(6)
With these ranking functions, it is possible to create perfor-
mance metrics for SBFL techniques.

C. Common Effectiveness Metrics for SBFL

Traditionally, the research community commonly uses two
metrics to assess the effectiveness of SBFL, namely the Wasted
Effort and the Proportion of Bugs Localized metric. Recently,
new metrics such as the Hit@X metric have been proposed.
This section defines and explains these metrics.
Wasted Effort (WE): Current research practice assumes
that developers have a perfect fault understanding and can
identify the fault as soon as they reach the fault location
while traversing the ranking list. With this assumption, every
developer has to inspect all the elements that are ranked higher
than the faulty element. The number of inspected non-faulty
elements is thus defined as the wasted effort for the developer.
Current research commonly puts the wasted effort in relation
to the total number of ranked elements and as such the wasted
effort is a percentage defined as:

min weR(cj) =
best rankR(cj)−1

|C| (7)

max weR(cj) =
worst rankR(cj)−1

|C| (8)

As this metric is defined for faulty spectra elements and not
the ranking metric itself, the results of this metric need to be



aggregated by a function a, for example by taking the average,
to compute a score for a specific ranking metric:

min we aggr(R) = a({min weR(fj) | fj ∈ F}) (9)

max we aggr(R) = a({max weR(fj) | fj ∈ F}) (10)

Using the aggregated score, different ranking metrics can
be compared against each other.
Proportion of Bugs Localized (PBL): Another commonly
used effectiveness metric is the proportion of bugs localized
when examining a certain percentage of code. This metric is
defined for a ranking metric and directly produces a score that
can be compared to other ranking metrics:

min pblp(R) = |{f∈F |min weR(f)≤p}|
|F | (11)

max pblp(R) = |{f∈F |max weR(f)≤p}|
|F | (12)

where p ∈ [0, 1] is the percentage of code inspected.
Hit@X: Lucia et al. [29] have introduced a new fault local-
ization effectiveness metric called “Hit@10”. The key idea is
to count how many bugs can be found when investigating
a fixed amount of ranked elements. The metric addresses
the issues Parnin and Orso [33] have raised, as developers
only investigate an absolute number of ranked elements before
giving up and using alternate debugging methods. The authors
have chosen 10 as threshold for the metric. For this study, the
metric is generalized as follows to have a varying threshold
of X ranked elements:

min hit countX(R) = |{f ∈ F | best rankR(f) ≤ X}|
(13)

max hit countX(R) = |{f ∈ F |worst rankR(f) ≤ X}|
(14)

X ∈ N+ represents the number of elements inspected.

III. STUDY DESIGN

A. Previous Findings and Research Questions

Previous experiments [2], [4], [29] with smaller programs
and an empirical study of ranking-based automatic debugging
techniques with 68 developers [33] indicate or predict the
following problems for the practicability of spectrum based
fault localization techniques on large-scale software systems,
as detailed below:
• SBFL techniques reveal faulty statements only after in-

specting a large number of lines or code elements [33].
• SBFL techniques often assign the same suspiciousness

scores for multiple lines or code elements [29].
• Users of SBFL techniques do not inspect in the order

provided by the ranked list [33].
• SBFL techniques require a large number of failing test

cases to accurately reveal a fault [2], [4].
The goal of this paper is to investigate if these problems really
exist for a complex software system.

SBFL techniques report faulty program statements only
after inspecting a large number of lines or code elements.
Based on the current effectiveness of SBFL techniques [11],
[30], [1], as identified by percentage-based metrics, e.g., the

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
n

ta
g

e 
o

f 
B

u
g

s 
F

o
u

n
d

Percentage of Code Examined

Best Case
Worst Case

ABC: 4.76%

Fig. 1: Results for the PBL metric for Tarantula for the SIR
programs flex, gzip, grep, and sed.

Wasted Effort (WE) metric (see Eq. 7 and 8) or the Propor-
tion of Bugs Localized (PBL) metric (see Eq. 11 and 12),
developers need to inspect several thousand lines for large-
scale software systems with hundred thousand lines of code
and more. This is not feasible in practice and is considered a
major drawback for SBFL techniques [33].

RQ1What is the absolute SBFL effectiveness? (Section V-A)

SBFL techniques often assign the same suspiciousness
scores for multiple lines or code elements. SBFL algo-
rithms use four numbers 〈nnp, nnf , nip, nif 〉 to compute the
suspiciousness. The sum of them is equal to the number of
available execution traces (test cases). If only a few test cases
are available, the number of possible different inputs to SBFL
algorithms drastically shrinks and the amount of different sus-
piciousness scores is limited. Consequently, multiple program
elements will share the same suspiciousness.

The real drawback of common suspiciousness scores arises
when ordering the program elements for the developer to
inspect. If multiple program elements share the same sus-
piciousness, those elements cannot be distinguished and the
actual order can only be chosen randomly. As an example,
Fig. 1 shows that even for relatively small programs like flex,
gzip, grep and sed, there is an observable difference in the
ranking (which may accentuate for larger systems).

RQ2What is the uncertainty in the assigned suspiciousness
scores? (Section V-B)

Users of SBFL techniques do not inspect in the order
provided by the ranked list. Parnin and Orso [33] have
shown in their study that developers do not linearly follow the
ranking produced by SBFL. Instead, they use the statements
ranked high by SBFL as starting points for their investigation
and then search the surrounding method, class, or file for the
actual fault location. This observation indicates that it is more
important to point developers to good starting points using
SBFL than to improve the ranking of the fault locations itself.

RQ3What is the number of files inspected when following
SBFL techniques? (Section V-C)

SBFL techniques require a large number of failing test
cases to accurately reveal a fault. The results in Abreu
et al. [2] show that on the SIR benchmark [12] even a
small number of failing test cases (nnf + nif ) provide a



reasonable fault localization performance. However, the study
also recommends that more failing test cases are always better.

RQ4What is the relation between the number of failing test
cases and SBFL’s accuracy? (Section V-D)

B. Study Subject

To answer our research questions, we have chosen ASPECTJ
[13] as a case study. ASPECTJ is an extension to Java that en-
ables developers to use an aspect-oriented programming style.
The selection of ASPECTJ is based on the size (∼500kLoc)
and the long available development history. Furthermore,
Dallmeier and Zimmermann [10] have used ASPECTJ in
their iBugs repository and argue that it covers a realistic
composition of different, commonly occurring bugs.

C. Study Protocol

To study the suitability of the different SBFL techniques
with respect to the AspectJ bugs reported in the iBugs repos-
itory, we use two phases. In the first phase, we analyze the
bugs manually and identify the faulty line(s) of code from the
change sets and the bug description provided in iBugs. In the
second phase, we use the results of the first phase as the data
for a descriptive evaluation and a comparison of all 33 used
SBFL techniques summarized by Naish et al. [30]. The goal of
this descriptive evaluation is to answer our research questions
(RQ1-RQ4). Specifically, we will use the absolute wasted
effort metric and the Hit@X metric (Equations 13 and 14)
to answer RQ1. To answer RQ2 and RQ3, no suitable metric
is available. Consequently, we needed to derive new metrics
to cover these two research questions. These two metrics,
which are detailed in the remainder of this section, are the
Area Between Curves (ABC) metric (Equation 15) for research
questions RQ2 and the Number of Files Investigated (NFI)
metric (Equations 17 and 18) research questions RQ3. For
RQ4, we will investigate the correlation between the number
of failing test cases and minimum wasted effort metric.

1) Area Between Curves (ABC): The past metrics defi-
nitions always define a metric for the best and the worst
case (and implicitly, due to the uniform distribution, also an
average case). However, if the best and worst case of any
metric diverge, there have to be ranked elements with the same
suspiciousness in the ranking implying a random order to parts
of the ranking. To measure the divergence of a given best/worst
case metric, the area between the best- and worst-case curves
can be leveraged. As Mworst ≤ Mbest holds in all points for
a metric M , the area between the curves is computed by:

ABC(M) = AUC(Mbest)−AUC(Mworst) (15)

AUC(M) ist the area under the curve for a metric M :

AUC(M) = 1
n ·
(

y0

2 +
∑n−1

i=1 yi +
yn

2

)
(16)

To analyze SBFL techniques with the ABC metric, the PBL
metric and the Hit@X metric can be used. Both have a varying
parameter that can be used to turn the metric into a discrete
cumulative function consisting of a set of equidistant points

TABLE I: The number of bugs used in this study, associated
with different components of ASPECTJ.
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All bugs 9 21 33 1287 106 10 78 409 477 2430
Bugs in iBugs 1 8 4 231 19 3 19 19 46 350
Applicable bugs 0 1 1 72 7 0 3 4 0 88
Involved bugs 0 0 1 50 2 0 1 3 0 57

(xi, yi), i ∈ [0, n], n ∈ N+. For a fixed number of support
points n, the set of support points for the PBL metric is defined
as

xi =
i
n yi = (min|max) pblxi

(R)

and for the Hit@X metric as

xi =
i
n · |F | yi = (min|max) hitxi(R).

The ABC metric reflects the decidedness of a ranking metric.
If the randomness in the ranking is low, ABC is close to
zero and the decidedness is high. On the other hand, if
the randomness in the ranking is high, ABC is high and
the decidedness is low. If not otherwise noted, throughout
this study the ABC value is presented as percentage of the
maximum area that can be achieved by a completely diverging
best and worst case. This makes the metric easily comparable
if the x-axis or y-axis scale is different.

2) Number of Files Investigated (NFI): To assess the ef-
fectiveness of pointing a developer to the right places using
SBFL when he/she follows the list of ranked statements in a
linear order, we define the number of files investigated metric.
This metric determines the number of files that need to be
investigated before the bug is found.

The metric can be defined for the best-case and the worst-
case as follows, where file(ck) returns the file name of the
program element ck:

min nfiR(cj) = |{file(ck) | best rankR(ck) ≤ best rankR(cj)}|
(17)

max nfiR(cj) = |{file(ck) |worst rankR(ck) ≤ worst rankR(cj)}|
(18)

IV. DATA COLLECTION & PREPARATION: THE ASPECTJ
CASE STUDY

We mined all 350 bugs from the iBugs repository [10] and
analyzed the specific source code changes, the compiled pre-
fix/post-fix versions, and available test cases. The 350 bugs in
the ASPECTJ iBugs benchmark suite range from the ASPECTJ
bug ID 28919 to ID 173602 and were reported between
December 30, 2002 and February 9, 2007, spanning four
years of development history. In the examined development
timespan, the contributors have produced a total of 7677
commits for a system spanning ∼ 200, 000 to ∼ 500, 000
lines of code (data taken from Openhub [31]).



A. Data Collection

The iBugs benchmark [10] includes for each bug the change
set extracted from the version control system. In most cases
however, the change set includes a lot of changed lines and
files that did not fix the actual bug. To evaluate the quality
of the rankings produced by the various SBFL algorithms in
this study, the lines that really contain the fault need to be
extracted from the change set. We assumed that the given
change set from the iBugs benchmark suite includes the real
fault and manually classified all lines in the change set either
as buggy or healthy. In addition to that, a level of confidence
(low, normal, or high) including an explanatory comment for
all lines classified as buggy was stored.

In total, all 350 buggy versions from the benchmark suite
were classified and only 88 were applicable for SBFL. The
262 removed buggy versions were not applicable for SBFL
for the following reasons: 86 buggy versions were classified
as enhancement and not as a bug. Section IV-B will expound
upon the difference between bugs and enhancements. An
additional 111 bugs did not contain a single line in the change
set that was classified as fault location, because some of the
change sets did not include changes to Java source code
at all while others did change Java source code that does
not appear in coverage reports (e.g., refactoring names and
changing imports). The remaining 65 bugs either had only
faulty lines classified with low confidence or did not produce
any execution traces due to compile time or runtime errors.
From the set of 88 buggy versions, only fault locations of
57 versions were executed by at least one test case. In this
paper, we also use the term involved bugs for these 57 versions.

Table I shows the number of bugs and how the set of bugs
was reduced through the various stages of data preparation.
All bugs in the iBugs benchmark suite were classified for this
study, from which ∼ 25% were applicable for SBFL and ∼
15% were actually involved in at least one test case.

B. Fault Classification

Dallmeier and Zimmermann [10] provide the change set
between pre- and post-fix versions in the diffformat between
the two corresponding revisions in the version control system.
As the changed lines the developers commit mostly exceed
the real fault location [16], [22], the change sets had to be
manually classified in order to be able to use the data as
a benchmark for fault localization. During the classification,
several bugs were considered to be difficult to localize using
SBFL. This section summarizes the evidence found.

a) Misclassification of Bug Reports: After a careful
inspection of the bug description and the change set itself,
86 bugs were considered not to be a real bug. Herzig et al. [17]
propose a set of rules which are used to distinguish bugs from
non-bugs. Those rules were applied during the classification
process to judge whether a reported bug is a real bug or not.
In the positive case, a bug report increases the likelihood of
the bug report being a real bug, among others, if:
• It reports a NullPointerException (most common

exception type) or other types of exceptions.

• A minimal failing example was provided that leads to
small semantic code changes fixing the issue.

For the negative case, we identified the following rules that
decrease the likelihood of a bug report being a real bug, for
example, if:
• The phrases “it would be great if”, “improve” or “en-

hance”, or similar phrases appeared in the bug descrip-
tion. No automatic classification was performed, but the
presence of these words have a high correlation with the
bug report not being a real bug, but rather an enhance-
ment.

• The report contains a request to add new features.
• Only strings (exception strings, log strings, ...) were

changed.
The classification was performed in a restrictive manner, such
that only bugs with a high likelihood of being a bug were
actually classified as a bug. The goal was to minimize the
type I error for the classification.

b) Bugs that are Difficult to Detect Using SBFL: Besides
the misclassification of bugs, there are some bugs that are
difficult to detect with SBFL, as they are generally difficult to
reproduce. Several bugs occurred due to concurrency issues
or environment issues (a limited number of reproducible
patterns have been successfully analyzed in [32]). Environment
issues include for example hardware constraints that lead to
OutOfMemoryError’s that were resolved by adding appro-
priate try-catch clauses. Another fix resolved a concurrency
issue by adding a synchronized modifier to a method.
Both example cases may be difficult to reproduce in a test suite
within reasonable budget constraints and are thus difficult to
detect using SBFL as they may not lead to deterministically
failing tests in the test suite.

From the 350 Bugs present in the iBugs repository only
88 were found to be applicable for SBFL. A large number
of bugs (86 ) were actually no bugs at all. From the
88 applicable SBFL bugs only 57 bugs were executed by at
least one failing test case. Consequently, for a large scale
software system, only a low proportion of bugs may be
identifiable with SBFL techniques.

V. EXPERIMENTAL RESULTS

A. RQ1: What is the absolute SBFL performance?

To understand the effect of the program size, we will present
the results of the Absolute Wasted Effort and Hit@X Metric in
the following. We focus on the Tarantula and Ochiai ranking
metrics as representative and well-known ranking metrics.

1) Absolute Wasted Effort: Fig. 2a shows the percentage of
bugs found using the Tarantula ranking metric after examining
50, 000 lines of code. When trying to locate 50% of all fault
locations, in the worst case more than 20, 000 lines of code
need to be inspected. When only trying to locate 20% of all
fault locations, a developer is still required to inspect around
3, 000 lines of code using the Tarantula technique. These two
numbers indicate that the state of the art of SBFL needs to be
improved to effectively support developers.
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(a) Fault localization performance of all bugs using Tarantula .
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(b) Fault localization performance of all applicable bugs, that were
involved in at least one test case, using Tarantula .

Fig. 2: Absolute fault localization performance.

In Fig. 2b, only fault locations that are involved at least
once in a passing or failing test case are examined. Under
this condition, the performance slightly improves compared
to Fig. 2a. However, SBFL users usually cannot guarantee
that the test suite will cover the fault location and especially
if the fault location is part of a newly written code segment.
Consequently, techniques that improve the quality of the test
suite need to be combined with SBFL techniques, c.f., [6],
[5], [7], [35]. Specifically interesting are regression test case
generation approaches [18], since bugs in newly written code
are often not covered by existing test cases.

To locate more than 20% or 50% or all bugs, a developer
has to inspect more than 7, 000 and 20, 000 elements, re-
spectively. However, fault locations that are involved in at
least one failing or passing test case are ranked significantly
higher.

2) Hit@X: Fig. 3a shows the Hit@100 metric (Eq. 13)
for all examined SBFL ranking metrics. The vertical axis
represents the number of bugs found after examining the
first 100 ranked elements produced by each ranking metric.
The plot marks the best-, average-, and worst-case for each
ranking metric. For the Hit@100 metric, the average and
worst-case are all less than or equal to two, which means
that all ranking metrics find less than 4% of all applicable,
involved bugs within the first 100 ranked lines of code in the
average or worst-case. In the best case, a third of the ranking
metrics is able to locate at least two bugs. The data suggests
that investigating only the first 100 ranked elements does
not help the developer at all. Nevertheless, interpreting and
investigating 100 ranked elements is already very much work

for a developer, and is not really realistic [33]. Furthermore,
Lucia et al. [29] state that inspecting 10 ranked elements would
be a more realistic number.

In the best-case, some SBFL techniques find five of the 88
prominent fault locations. However, on average the techniques
find only one to two of these faults after examining 100 ranked
elements. Fig. 3b shows the Hit@1000 metric for all SBFL
ranking metrics/techniques.
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(a) Number of bugs found after examining 100 ranked lines.
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(b) Number of bugs found after examining 1000 ranked lines.

Fig. 3: Hit@100/1000 metric for all SBFL techniques.

When examining the first 1000 ranked elements, nearly all
ranking metrics guarantee to find at least two bugs. The median
of the number of found bugs across all ranking metrics is five.
Nevertheless, 1000 ranked elements are too many elements
for a developer to examine in practice while in the best-case
(11 out of 88 bugs), it is only possible to find ∼ 12, 5% of
all applicable bugs. In addition to that, a deeper analysis of
all identified bugs reveals that they are involved in at least
one failing test case, which implies that no bug that is not
involved can be found within the first 1000 ranked elements.
This confirms and strengthens the results from Section V-A1.



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.0

0.2

0.4

0.6

0.8

1.0 Tarantula

P
er

ce
n

ta
g

e 
o

f 
B

u
g

s 
F

o
u

n
d

Percentage of Code Examined

Best Case
Worst Case

ABC: 26.05%

(a) Fault localization quality of all bugs using the Tarantula ranking metric.
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(b) Fault localization quality of all bugs that were involved in at least one
execution trace using the Tarantula ranking metric.

Fig. 4: Tarantula fault localization decidedness.

Applying the Hit@100 and Hit@1000 metric, at most 2 and
5 of the 88 bugs were found in the average case by all
ranking metrics, respectively. In the best case, only up to
5 and 11 bugs are identifiable when developers examine the
top 100 and 1000 ranked elements, respectively.

B. RQ2:What is the uncertainty in the assigned suspiciousness
scores?

The examined versions of ASPECTJ contain a large num-
ber of of executable and coverage-producing lines of code
(cp. Section IV). For each version, between 990 and 1, 999
execution traces were produced. Under the given circum-
stances, most suspiciousness scores in the ranking are shared
by multiple lines. As the order of multiple lines with the
same suspiciousness can only be randomly chosen, the Area
Between Curves (ABC) metric (see Section III-C1) has been
defined as a repeatable and meaningful metric. In all plots, the
area used to calculate the ABC metric between the two curves
is highlighted. The smaller the ABC metric is, the less random
a ranking is and, as such, the results of the fault localization
algorithm are more reliable for a developer debugging a
program. A value of 100% represents a completely random
ranking (low decidedness), whereas a value close to 0% (high
decidedness) represents a deterministic ranking.

1) ABC for Involved and Non-Involved Bugs: Fig. 4 shows
the fault localization quality of Tarantula [20]. Both figures
plot the best- and worst-case proportion of prominent bugs
localized. Fig. 4a includes all prominent bugs in the dataset,
whereas Fig. 4b only includes all prominent bugs that were
involved in at least one test case. In both plots, the horizontal
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Fig. 5: A closer look at the fault localization decidedness in
the first 4,000 lines of examined code.

axis represents the percentage of code examined and the
vertical axis represents the percentage of bugs localized. The
curves reveal the minimum (worst-case) percentage of bugs a
developer can find and the maximum (best-case) percentage of
bugs a developer can find when examining a certain percentage
of the ranked lines.

In Fig. 4, Tarantula maps a lot of fault locations to the
same suspiciousness resulting in an ABC of 26.05%. After
examining ∼ 25% of the code, the Tarantula ranking shows a
very large divergence between the best- and worst-case ranking
and thus becomes worthless from a practical point of view, as
all remaining bugs are in random order. However, approxi-
mately a third of the evaluated bugs were never involved in
either a passing or failing execution trace. As already shown
in Section V-A1, under such a condition, it is difficult for
spectrum-based fault localization to locate the fault, as the
fault location then shares the same suspiciousness with at least
all the statements that also were never involved in a single
execution trace.

The decidedness improves, as indicated by an ABC metric
of 2.76% and the curves in Fig. 4b, if the SBFL technique is
only locating faults that are involved in at least one execution
trace. However, it is important to keep in mind that software
engineers do not know if the test suite has actually covered
the bug and thus there is a test case that involves the bug.

2) Impact of Different Ranking Metrics: SBFL intends to
point the developer to the fault location with the first elements
in the ranking and thus, algorithms should rank elements
in the first positions with high confidence and decidedness.
Examining the growth of the best- and worst-case rankings for
the first 4, 000 lines of code for the Overlap ranking metric



in Fig. 5a, it is evident that the guidance for a developer is
not very clear. Depending on the random ranking, a developer
may find up to ∼ 20% of the bugs after examining 1, 000
lines of code or less than 5%. Overlap has the highest ABC
value of all examined ranking metrics in the first 4, 000 lines
of code.

Fig. 5b shows the ranking curves for the Tarantula ranking
metric with an ABC metric of 1.59%, being clearly superior
to the results for the Overlap ranking metric with an ABC
metric of 27.92%.

All in all, if multiple elements share the same suspicious-
ness, SBFL reaches its limitations. The examined ranking
metrics considerably differ in their ABC value for programs of
large size and thus, the ABC value may be used as an indicator
whether a given ranking metric is suited for fault localization
for a given problem domain with a certain size.

Large programs can introduce randomness in the ranking
through a lot of ranked elements having the same suspicious-
ness. If the fault locations are guaranteed to be involved in
at least one execution trace, ranking metrics are much more
decided, resulting in lower ABC values. Different ranking
metrics may have an impact on the ABC value.

C. RQ3: What is the number of files inspected when following
SBFL techniques?

The Number of Files Investigated metric counts the files a
developer looks at until the prominent bug is found. As defined
in Section III-C2, it is assumed that developer open each file
only once, inspect the complete file, and then skip all program
elements in the ranking that where already investigated the file
the program element is contained in.

Fig. 6 plots the average number of files a developer has to
investigate prior to finding the file containing the prominent
bug for all buggy versions in which the prominent bug was
involved in at least one execution trace. The vertical axis
contains an entry for each of the 33 ranking metrics [30].
The horizontal axis represents the average number of files a
developer has to investigate and is plotted on a logarithmic
scale. The minor ticks mark the arithmetic mean between
the next lower and higher major ticks. The logarithmic scale
allows to spot the differences for the buggy versions where
less than 100 files have to be investigated while still allowing
to show the large part of the data where more than 100 files
have to be investigated, and thus emphasizes the data that
is most important to developers: the performance of the first
investigated files. Each line in the plot represents the average
number of files that need to be investigated for a specific
buggy version of ASPECTJ using the ranking produced by the
according ranking metric. A longer line indicates that multiple
prominent bugs can be localized with the exact same average
number of files. The thick long line represents the median
of the number of investigated files for all buggy versions
examined for the according ranking metric. The dotted line in
the background is the median of the medians of the ranking
metrics. The density of the buggy versions is represented by
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Fig. 6: Average number of files investigated in order to find
all prominent bugs that were involved in a coverage trace at
least once.

the shaded area. A larger shaded area means that a larger
number of prominent bugs can be found within the effort
range. The ranking metrics are sorted by their median in
ascending order.

For most ranking metrics a developer has to investigate more
than 10 files on average to find the first prominent bug. In
order to find 50% of the bugs, a developer has to investigate
more than 150 files on average using the best ranking metric,
which we consider an unfeasible task in practice. For all SBFL
ranking metrics, the bulk contribution to the shaded area is
around the median of the respective metric. That means that
it is very likely to find a lot of bugs when examining an
average number of files that is close to the median of the
respective ranking metric. However, the median of the median
of all ranking metrics is nearly 250 files (exact measurement:
226.5 files) that need to be investigated.

In summary, the data clearly indicates that a developer has
to inspect a large number of files in the fault localization
process. This is in our opinion a major draw back of the SBFL
techniques and also opens opportunities for improvement of
the SBFL approaches.

The NFI metric indicates that developers using SBFL tech-
niques on the ASPECTJ case study have to inspect on average
250 files per bug.



D. RQ4: What is the relation between the number of failing
test cases and SBFL’s accuracy?

Fig. 7 shows the relation between the number of failing
test cases and the minimum wasted effort in scatter plots for
Tarantula and Ochiai. Please note that a lower wasted effort
indicates a higher SBFL accuracy. A manual inspection of
Fig. 7a and 7c reveals that there is no particular relation be-
tween the two variables. This can be explained with the same
argument as provided in Section V-A that failing test cases
that do not involve the target bug provide limited information
to localize the bug. An investigation of the theoretical case
with only failing test cases that involve the bug (in Fig. 7b
and 7d) hints at a trend that more involved failing test cases
improve the accuracy of SBFL techniques.

For a formal analysis of the relationship, we analyze
the correlation between number of test cases and minimum
wasted effort. Based on the data, as given in (Fig. 7a-7d),
non-parametric correlation coefficients need to be computed.
The resulting Spearman correlation coefficients are -0.026
(p-value>0.05) and -0.313 (p-value<0.05) for Tarantula and
Ochiai, respectively. For all 33 SBFL metrics [30], the median
correlation coefficient is -0.036 with a variance of 0.098. This
indicates that there is no correlation. However, the analysis is
rather inconclusive due to the high variance of the correlation
coefficients due to the inclusion of basic and weaker SBFL
Metrics (cp. [30]) and some high p-values for the smaller
correlation coefficients. The second data set considers only
involved failing test cases (Fig. 7b and 7d) and the corre-
lation coefficients are -0.182 (p-value>0.05) and -0.750 (p-
value<0.05) for Tarantula and Ochiai. Thus, the correlations
are higher than for the data that considers all failing test case.
This supports the previous observations that test case quality
matters, and this gives the community a hint that more high
quality test cases which actually execute the bugs improve
SBFL’s fault localizing capabilities.

The data suggests but does not confirm that there is no
correlation between the number of failing test cases and the
wasted effort metric. Furthermore, there is an indication that
more involved test cases can improve SBFL’s accuracy.

E. Effectiveness Metrics in Comparison

Table II shows various effectiveness metrics for all exam-
ined SBFL ranking metrics. All columns but the last column
are percentage values rounded to two digits, whereas the last
column is the absolute value of the NFI effectiveness metric.
The values were computed as defined in Section III. The best
value of each effectiveness metric is printed in bold font.

For the {min,max} we aggr metrics, the wasted effort
metric of all bugs has been aggregated using the arithmetic
mean. ABC (Equation 15) refers to the Area Between Two
Curves, namely the area between the min pbl and max pbl
curves. The last column shows the median number of files
investigated (Section III-C2) metric. In addition to the results
of the various ranking metrics, the last row of the table

TABLE II: Various SBFL effectiveness metrics for the differ-
ent ranking metrics.

Ranking metric m
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n

w
e

a
g
g
r

m
a
x

w
e

a
g
g
r

m
i
n

p
b
l 0

.0
1

m
a
x

p
b
l 0

.0
1

m
i
n

p
b
l 0
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A
B
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Ample 18.39 18.84 5.26 7.02 35.09 35.09 0.45 223.00
Anderberg 15.49 30.86 5.26 5.26 45.61 47.37 15.36 226.50
ArithmeticMean 42.01 42.54 7.02 7.02 43.86 45.61 0.53 332.00
Cohen 41.45 41.98 5.26 7.02 42.11 43.86 0.52 333.00
Dice 15.49 30.86 5.26 5.26 45.61 47.37 15.36 226.50
Euclid 65.88 66.82 5.26 5.26 12.28 12.28 0.95 326.00
Fleiss 44.59 45.12 5.26 5.26 40.35 40.35 0.53 302.00
GeometricMean 15.14 15.67 5.26 5.26 49.12 49.12 0.54 225.00
Goodman 15.49 30.86 5.26 5.26 45.61 47.37 15.36 226.50
Hamann 65.88 66.82 5.26 5.26 12.28 12.28 0.95 326.00
Hamming 65.88 66.82 5.26 5.26 12.28 12.28 0.95 326.00
HarmonicMean 15.38 15.90 7.02 8.77 45.61 45.61 0.51 195.50
Jaccard 15.49 30.86 5.26 5.26 45.61 47.37 15.36 226.50
Kulczynski1 15.49 30.86 5.26 5.26 45.61 47.37 15.36 226.50
Kulczynski2 16.20 18.97 3.51 5.26 38.60 38.60 2.77 186.00
M1 65.88 66.82 5.26 5.26 12.28 12.28 0.95 326.00
M2 17.31 32.66 0.00 0.00 36.84 36.84 15.34 176.00
Ochiai 16.07 18.85 1.75 1.75 47.37 47.37 2.78 207.00
Ochiai2 14.96 17.69 3.51 3.51 47.37 47.37 2.72 191.00
Overlap 10.25 37.76 1.75 15.79 31.58 63.16 27.51 183.00
RogersTanimoto 65.88 66.82 5.26 5.26 12.28 12.28 0.95 326.00
Rogot1 42.55 43.08 3.51 5.26 43.86 43.86 0.54 302.00
Rogot2 15.38 15.90 7.02 8.77 45.61 45.61 0.51 195.50
RussellRao 16.53 33.62 1.75 17.54 35.09 36.84 17.07 166.00
Scott 42.55 43.08 3.51 5.26 43.86 43.86 0.54 302.00
SimpleMatching 65.88 66.82 5.26 5.26 12.28 12.28 0.95 326.00
Sokal 65.88 66.82 5.26 5.26 12.28 12.28 0.95 326.00
SorensenDice 15.49 30.86 5.26 5.26 45.61 47.37 15.36 226.50
Tarantula 13.77 16.54 3.51 7.02 43.86 43.86 2.76 186.00
Wong1 16.53 33.62 1.75 17.54 35.09 36.84 17.07 166.00
Wong2 65.88 66.82 5.26 5.26 12.28 12.28 0.95 326.00
Wong3 20.90 23.84 5.26 7.02 33.33 33.33 2.95 186.00
Zoltar 16.14 18.90 1.75 3.51 40.35 40.35 2.77 206.00

Mean value 32.0 38.01 4.46 6.43 34.87 36.36 6.01 249.39

contains the arithmetic mean of each effectiveness metric for
all ranking metrics.

Naish et al. report a mean value of 12.27% for the average
of the pbl0.01 metric using programs from the SIR and 23
different ranking metrics [30]. In addition to that, a mean value
of 46.57% is achieved when investigating 10% of the code
(pbl0.1) using the same artifacts. In this study, the mean PBL
value is slightly lower. For 1% of examined code (pbl0.01), it is
5.05%, and for 10% of examined code (pbl0.1) it is (35.09%).
That means that with the same percentage based effort, there
are less bugs found in the ASPECTJ dataset. Lucia et al.
report a mean value of 36.01% for the average of the pbl0.1
metric using 23 different ranking metrics and projects from
the SIR [29]. The mean values indicate that the effectiveness
measured by the PBL metric does not differ in an unexpected
way when comparing the results of this study with the results
of other researchers with smaller programs from the SIR.

For the wasted effort metric, Abreu et al. report a mean
value of 9.86% using four ranking metrics [4] and a mean
value of 12.5% for four ranking metrics in a different study [1].
Naish et al. report a mean value for the metric of 22.25% with
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(a) Tarantula: WE vs, #failing test cases.
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(b) Tarantula: WE vs. #involved failing test cases.
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(c) Ochiai: WE vs. #failing test cases.
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(d) Ochiai: WE vs. #involved failing test cases.

Fig. 7: The relation between the number of [involved] failing test cases and SBFL’s accuracy.

25 different ranking metrics [30]. All reported mean values
originate from a dataset containing only programs from the
SIR. The mean value of the average wasted effort metric in
this study is 35.01%. This indicates that the WE metric for
this study compared to the results of other researchers using
smaller programs is higher. However, as it is more difficult
to pinpoint a fault location in a larger program it is not
unexpected to have a higher wasted effort.

Section V-A examining the Hit@100 and Hit@1000 metric
has shown that the effectiveness of SBFL for a project of this
size is too unreliable for a developer to adapt SBFL in practice,
as no developer will examine a list of ranked program elements
longer than 1000 elements, even when embracing skipping
and zig-zag-patterns to scan the list. Hence, even though the
values of commonly used effectiveness metrics computed in
this study fit into the bounds of common research results, the
rankings produced by SBFL in this study are unusable for
developers in practice. This means that the used effectiveness
metrics are not suited to distinguish between useful and
impractical rankings. Thus, the data provides evidence that the
commonly used effectiveness metrics are not suited to measure
the SBFL effectiveness.

All in all, the data supports that the practical validity of
the commonly used effectiveness metrics has to be ques-
tioned. Additional effectiveness metrics should be developed,
improved and thoroughly validated, for example as described
by Schneidewind [36].

The commonly used proportion-based effectiveness metrics
are within the bounds of the results of other researchers using
the SIR. However, the results for the absolute effectiveness
metrics (absolute WE, Hit@X and NFI) are worse for the
relatively large ASPECTJ code base. Thus, indicating that
the SBFL techniques have to be significantly improved to
be applicable in practice.

VI. DISCUSSION

A. Threats to Validity

The are two main potential threats to validity for this
work. First, SBFL approaches and the proposed metrics (ABC
and NFI) have been evaluated on ASPECTJ only. This case
has been selected because 1) it has a relatively large scale
compared to the common benchmarks in the area and 2)
its code and bug reports are publicly available [10] through
a versioning system. However, there is a threat to external
validity that the obtained results cannot be generalized for
other large scale software systems. To reduce the threat to
external validity of our findings, we have also investigated
buggy versions of three large programs (i.e., Rhino, Lucene,
Ant)[29]. Specifically, we analyze buggy versions where the
bugs span up to 5 lines [29]. Our analysis on these buggy
versions also shows similar results which can be found at [23].

A second potential threat to validity lies in the manual
classification of the bug locations. In the classification, we
stated for each faulty line also a confidence level (low,
medium, high). As a conservative choice, for this research, we
considered only bugs classified with high confidence. For each
non-trivial bug we classified, we documented an argument
supporting that classification. It is possible that some bug has



been misclassified. For this reason, we made the commented
code versions for this experiment available at [23], including
our classification and the relative comments to be checked for
future investigations.

B. Recommendations

We recommend future SBFL studies to evaluate their pro-
posed approaches beyond smaller programs in SIR. Larger
programs can serve as harder yardsticks for SBFL techniques.
An SBFL technique that can work well for larger programs is
more likely to work well for smaller programs, but it is not
likely the other way round.

We also recommend the inclusion of larger programs in
SIR. There is a need for a community-wide effort to create a
benchmark containing many larger programs of various kinds
(compilers, IDEs, web applications, etc.) to fully assess the
effectiveness of SBFL and other techniques. As demonstrated
in this work, the creation of such benchmark requires much
manual effort involving the exclusion of feature (enhancement)
requests, locating faulty program elements from fixes, and
filtering bugs unsuitable for SBFL.

Our findings also highlight that test suite quality is an
important factor that determines the effectiveness of SBFL
techniques. A number of past studies have proposed automated
test case generation techniques to enrich test suites to im-
prove SBFL effectiveness [6], [5], [7]. However, such studies
assume the availability of test oracles, which unfortunately
are unavailable for many programs and bugs. Hence, there is
a need for more effective and practical approaches that can
either enhance SBFL to work well even with poor quality test
suites, look at other debugging hints beyond program spectra
to locate bugs, or generate test oracles for newly generated
test cases. We encourage future studies to investigate these
research opportunities.

VII. CONCLUSIONS & LESSONS LEARNED

Debugging large scale programs might be dramatically time
consuming [38]. Spectrum-Based Fault Localization is an
automated fault localization technique aiming at localizing and
ranking a set of suspicious elements likely to be the cause
of a failing test case. Several SBFL approaches have been
evaluated only on small and medium-size benchmarks and
under the unrealistic assumption of a developer sequentially
going through the ranked list of suspects [33].

In this paper, we evaluated 33 state-of-the-art SBFL ap-
proaches for the debugging of a larger scale project, ASPECTJ.
We take the source code versioning repository and the bug
reports for ASPECTJ from the publicly available iBugs col-
lection [10]. From an initial set of 350 faulty version from
the iBugs repository of ASPECTJ, we manually classified
88 bugs where SBFL techniques can be applied. To com-
pare the different SBFL approaches, we used both a set of
established metrics and two additional ones we defined, which
try to better approximate more realistic assumptions about
developers’ behavior. Overall, at most 11 bugs can be found
with any of the investigated SBFL techniques after examining

the 1000 top ranking suspicious lines, requiring on average
an inspection of about 250 files to discover any bug. These
results extend earlier studies [1], [34] and show a generally
poor performance of current SBFL approaches on this case
study. We summarize the main lessons learned as:
Lesson 1. A large proportion of bugs cannot be directly
detected with the studied SBFL techniques, e.g., concurrency
bugs or environment related bugs like memory leaks.
Lesson 2. A large proportion of bugs were not executed by
a single failing test case (nif = 0). Since the involvement
in failing test case significantly affects localizability of a bug
with SBFL techniques, this limits the effectiveness of SBFL.
Lesson 3. The study shows that for large programs, the
number of lines and files that need to be inspected based on
the recommendation of SBFL techniques is high, but can be
reduced by high quality test cases that execute the bug.
Lesson 4. The study shows that multiple elements share the
same SBFL suspiciousness scores, thus introducing random-
ness into the ranking order.
Lesson 5. There is weak evidence that the number of failing
test cases has no correlation with SBFL’s accuracy. It is more
important to have high quality test cases that improve the
chance of executing the bug.
Lesson 6. The study shows that results that have been obtained
by using small programs are hard to replicate/generalize on the
ASPECTJ case study.
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