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1 Introduction

The data gathered in various scientific domains and industrial applications is steadily growing in
size. What today seems to be large-scale may become small-scale in five to ten years. The size of
the data increases in both, data set size and the number of measured or simulated variables of a
single datum. However, the increase in the size of the data leads to an increased complexity when
dealing with such data sets. On the one hand the large-scale data needs to be processed within
reasonable amounts of time while on the other hand, the perception of the human being analyzing
data can only deal with a certain complexity limited by perception. For the latter, it is inevitable to
reduce the complexity of the data. A commonly chosen method in applications such as compression,
classification or visualization is to reduce the number of dimensions of the data [10]. Dimension
reduction techniques aim to compute a data set with fewer dimensions based on the original data,
that still represents patterns and characteristics of the original data.

The dimension reduction techniques can generally be classified into linear and non-linear techniques,
as seen in Figure 1. Next to that, the different algorithms either aim to preserve global or local
properties of the high dimensional space in the low dimensional counterpart. As research specifically
focuses on the development of non-linear techniques, literature reviews have often summarized and
compared existing techniques against each other [5, 10, 11, 33]. For visualization purposes the
approaches commonly project the high-dimensional space to a two or three dimensional space which
can then be visualized using 2D or 3D scatter plots. There are also visualization techniques that are
able to visualize more than 3 dimensions, for example parallel coordinate plots or glyphs, which can
also be used to visualize the reduced data [8, 15, 18].

This chapter aims to introduce basic methodologies to cope with high dimensional data. That
includes approaches to reduce the dimensionality of data and also approaches to visualize the
low-dimensional representation of the high-dimensional data. The focus hereby is on introducing
general ideas, mathematical concepts and considerations to make when dealing with the different
approaches and high-dimensional data. In addition to that, non-exhaustive references to more
specific literature is provided.

The remaining sections of this chapter are organized as follows. Section 2 introduces general concepts
of dimension reduction techniques used for visualization purposes. Different visualization techniques
for high dimensional data are then introduced in section 3. A comparison of different algorithms
and their characteristics is then presented in section 4 leading to a conclusion and future work for
high dimensional data visualization in section 5.

2 Dimension Reduction Techniques Overview

Data gathererd from the real-world, such as fMRI scans or speech signals, is often high dimensional
with thousands of dimensions. Though the actual data points xi with i ∈ {1, .., N} are represented
in the high dimensional space with D dimensions, the data does not fill the whole high dimensional
space, but instead lies on or close to a manifold within the high dimensional space. The smallest
dimension required to represent this manifold is called the intrinsic dimension d < D of the data.
Dimension reduction techniques aim to find a representation yi with i ∈ {1, .., N} of the high
dimensional data xi in a space with the intrinsic dimension d of the data. However, techniques
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by van der Maaten et al. [33].

used for visualization purposes need to reduce the high-dimensional data to ≤ 3 dimensions for
simple visualization techniques, or up to two-digit dimensions for enhanced techniques such that the
visualizations can still be presented and perceived with reasonable effort.

Generally, dimension reduction techniques can be classified into linear and non-linear techniques.
Linear techniques assume that the manifold in the high dimensional space is linear, while non-linear
techniques are not based on this assumptions. Typically, dimension reduction techniques do not
know the manifold nor the intrinsic dimension of the data. However, it is of high interest to obtain
the lower-dimensional representation yi before further processing the data to avoid the curse of
dimensionality.

This section further presents the key ideas of selected linear and non-linear dimension reduction
techniques. As it is one of the most commonly used linear techniques PCA is representatively
explained. For non-linear techniques Local Linear Embedding, ISOMAP and t-SNE are explained
as they are also among the commonly used techniques and they representatively showcase different
approaches to reduce the dimensionality of the data.

2.1 Linear techniques

Principal Component Analysis

Principal Component Analysis (PCA) [1, 5, 12, 35] aims to project the given data xi ∈ Rd, i = 1, ..., n
to a lower-dimensional representation by iteratively projecting all data points to multiple lines L
embedded in Rd, which are also referred to as principal components. Each line can be expressed as
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Figure 2: Example of the principal components PCA identifies for some normal distributed data.

L = µ+ θin, where µ is the mean value of the dataset xi and θi ∈ R,
∑

i θi = 0 and an arbitrary
n ∈ Rd which spans the line. The ideal line minimizes the total distance of all data points xi to the
projected line L, which is equivalent to maximizing the variance of the projected points on the line
using the formula:

vn = 1
m

m∑
i=1

((xi − µ) · n)2 = 1
m

n∑
i=1

θ2
i (1)

If the data points were perfectly linear, then the first computed line L would contain all projected
points with an error of 0 and the points projected on all lines orthogonal to L would then show a
variance of 0. However, if the data is not perfectly linear, the goal is to project the data points to
further lines maximizing the variance, that additionally are orthogonal to all other existing lines.
Each line is then referred to as principal component of the data, which are sorted by their variance
in descending order. The dimension of the data can be reduced by using the first k < d principal
components as an approximation of the whole data set. As the remaining k−d principal components
show a lower variance than the first k components, the information added by the remaining principal
components (and which is thus lost by the projection) is negligibly low.

Figure 2 shows some data which has been analyzed using PCA. The first line maximizing the
variance of the projected points is represented as “1st PCA Dimension”. The second line represented
by “2nd PCA Dimension” is orthogonal to the first line and again maximizes the variance of the
projected points in the remaining dimension. Each data point can then be represented by a linear
combination of vectors on the two lines.
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2.2 Non-linear techniques

Local Linear Embedding

Local Linear Embedding (LLE) [5, 12, 24, 25] reduces the data to a lower-dimensional representa-
tion yi ∈ Rl<d by computing neighborhood preserving embeddings in the high dimensional data
xi ∈ Rd, i = 1..n, that are then mapped to the low-dimensional counterpart. LLE assumes that the
neighborhoods lie on or near a locally linear patch of the non-linear manifold. The locally linear
patches are then mapped to global coordinates on the manifold.

The first step of the algorithm finds the nearest neighbors of each data point xi, represented as the
function Ni(j) which returns the index of the jth neighbor of the ith data point. The neighbors can
either be chosen by finding the k nearest neighbors or by finding all k neighbors within the fixed
radius ε. Then the second step finds a representation of each data point xi using its surrounding
neighbors. The data point is described by a linear combination of the weights wij of the surrounding
neighbors such that the reconstruction error is minimized:

min
w

n∑
i=1

∥∥∥∥xi −
k∑

j=1
wij · xNi(j)

∥∥∥∥2
(2)

As a last step, the weights are used to find the low dimensional representation yi of each data point
by, again minimizing the reconstruction error using the surrounding neighbors, but this time in the
low-dimensional representation:

min
Y

n∑
i=1

∥∥∥∥yi −
k∑

j=1
wij · yNi(j)

∥∥∥∥2
(3)

ISOMAP

ISOMAP [3, 30] reduces the dimensionality by leveraging the geodesic manifold distances between
all the data points. The algorithm takes three steps to reduce the dimensionality. The first step
computes an undirected nearest neighbor graph G such that all edges {xi, xj} of the graph only
exist iff xi and xj are nearest neighbors. The nearest neighbors of xi can be found by choosing
the k nearest neighbors or by finding all l neighbors within the fixed radius ε. The weight of the
edges is the distance d(xi, xj) between the two data points in the input space using a valid distance
metric. The second step of the algorithm then estimates the geodesic distances between all pairs
of points by computing the shortest path between the two points dG(xi, xj) on the neighborhood
graph G using a standard shortest path algorithm. Those distances are then used in the final step
to create a mapping in the lower-dimensional representation that preserves the distances between
the mapped points. To obtain the low-dimensional mapping, a technique called multidimensional
scaling (MDS) [22] is used, which is not further elaborated within the scope of this work.

Figure 3 shows two SwissRoll datasets generated by applying Gaussian noise to a perfect SwissRoll.
In Figure 3a the nearest neighbor graph perfectly models the embedding. However, on the right
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(a) The neighborhood relations stay within their in-
tended location on the manifold. Unrolling the non-
linear manifold is perfectly possible.
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(b) Adding noise to the dataset changes the neighbor-
hood relations such that relations between different
parts of the manifold are connected. Unrolling will
not yield the intended result.

Figure 3: 5-nearest neighborhood graph construction on a non-linear manifold using ISOMAP. The
blue lines represent the neighborhoods relations.

side of the roll there is a gap and hence, the neighborhood graph is bipartite leading to a lot of
infinite shortest paths during the execution of ISOMAP. When increasing the noise of the data as
seen in Figure 3b, the nearest neighbor graph starts to establish relations between points that are
not actual neighbors in the manifold of the input space. However, the connected points between
the graphs have a tremendous impact on the shortest path calculations, as they can be used as
shortcuts between the spirals. As adding a little noise to the input can potentially yield a completely
different result, the ISOMAP algorithm is not a robust algorithm by itself. Approaches exist to
make ISOMAP more robust on noisy data [7, 27, 28].

t-SNE

Van der Maaten and Hinton [32] introduced t-SNE, which is a variation of Stochastic Neighbor
Embedding (SNE) [17]. SNE creates a low-dimensional representation of the high-dimensional data
in two steps. First SNE assigns a similarity measure to all data point pairs (xi, xj) by applying
a Gaussian distribution between them which expresses the probability with which point xi would
choose xj as neighbor, as follows:

pj|i = exp(−||xi − xj ||2/2σ2
i )∑

k 6=i exp(−||xi − xk||2/2σ2
i ) (4)
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with σi being the variance of the Gaussian centered on point xi. Hence, the closer two points are
the higher the probability xi would choose xj as neighbor.

SNE then tries to preserve those probabilities in a low dimensional representation, where the
similarities between the mapped points yi and yj are calculated in a similar way. The key difference
is that the variances σi are fixed to 1√

2 in the low-dimensional representation. Thus the conditional
probability of two mapped points yi and yj in the low-dimensional representation can be calculated
as follows:

qj|i = exp(−||yi − yj ||2)∑
k 6=i exp(−||yi − yk||2) (5)

If a perfect mapping was possible, then pj|i is equal to qj|i. Thus, the optimization objective of SNE
is minimizing the differences between the conditional probabilities pj|i and qj|i of the respective
data points in the high- and the low-dimensional space.

t-SNE modifies the SNE approach in two points. First, t-SNE uses a different cost function for the
optimization objective having the advantage that it has simpler gradients. Second, t-SNE employs a
Student-t distribution instead of a Gaussian distribution in the low-dimensional space. With this
distribution, t-SNE is easier to optimize and reduces the crowding problem - the problem when a
lot of data points with equal distances in a higher dimensional space need to be represented in a
two-dimensional space.

3 Visualization Techniques

Having reduced the dimensionality of the data as described in section 2 the lower-dimensional data
can now be visualized leveraging various different visualization techniques. This section introduces
2D scatter plots, 2D scatter plot matrices, interactive 3D scatter plots and parallel coordinates.

3.1 Scatter Plots

As most physical visual output devices have a two-dimensional output, it is convenient to use 2D
plots for visualization purposes. Thus, the data has to be reduced to two dimensions and a commonly
used visualization technique are scatter plots to display each single data point. These static scatter
plots are especially useful, as according to Sedlmair et al. [26] they do not require time-consuming
interaction overhead, as all data is immediately available in one region. Further there is no need to
relate the visualized data to any other visualization, such that a single 2D scatter plot does not
require a thorough understanding of relationships between different visualizations.

Figure 4 shows two scatter plots produced from the same data set - namely from 6000 handwritten
digits represented by 28·28 = 784 pixels. As each pixel represents a dimension of the high dimensional
space, two different dimension reduction techniques were applied to obtain the two figures 4a and 4b.
Each color represents one of the 10 digits, thus there are 10 different colors used within the plot.
From a perception perspective, it is easier to spot the relationships in the data in Figure 4a than
in Figure 4b. This is due to the fact that the data in Figure 4a is more aligned to clusters by the
dimension reduction technique than the other method. This means that while scatter plots can
reveal useful information and structures, the result heavily depends on the input data.
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(a) Dimension reduction with t-SNE
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(b) Dimension reduction with Local Linear Embed-
ding.

Figure 4: 2D scatter plot representations of 6000 hand written digits from the MNIST data set.
Each digit image is represented by 28 · 28 = 784 pixels, hence dimensions. PCA was used to reduce
the data set to 30 dimensions before applying the respective dimension reduction techniques to
further reduce the dimensionality to 2 dimensions.

3D scatter plots: Compared to 2D scatter plots, 3D scatter plots visualize a third dimension of
the low-dimensional representation of the data. The third dimension adds additional information to
the visualization that cannot be visualized with a single 2D scatter plot. However, the technique
requires interaction to fully yield its potential, as the perception strongly depends on the perspective
from which the user looks at the data.

Figure 5 shows the same dataset visualized as 3D scatter plot from different perspectives. By only
looking at a single perspective it is not possible to correlate or compare the different data classes.
Even when considering the second perspective it is not clear how the different colored data classes
relate to each other. Hence, 3D scatter plots are only meaningful when viewed in an interactive
environment, where the user may turn, pan or zoom the visualization. However, Sedlmair et al.test
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Fig. 5. (a)-(d): Screenshots of the entangled dataset entangled1-3d-3cl-separate designed to show the most possible benefits for i3D.
(a),(b) two viewpoints of the same i3D PCA scatterplot. An accompanying video shows the full 3D rotation. (c) 2D PCA projection. (d) t-SNE
untangles this class structure in 2D. (e)-(f): 2D scatterplots of the reduced entangled2-15d-adjacent dataset which we designed to have a
ground truth entangled class structure in 15D. (e) Glimmer MDS cannot untangle the classes, neither can PCA and robPCA (see supplemental
material). (f) t-SNE nicely untangles and separates the ground truth classes in 2D.
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PCA robust PCA glimmer MDS t-SNE
PCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCAPCA robPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCArobPCA GLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMERGLIMMER t-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNEt-SNE

abalone 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cars03Cropped_d2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

italianwines -1.0 0.0 0.0 -0.5 0.0 -1.0 -0.5 -1.0 -1.0 0.0 -1.0 -3.0 -2.5 -1.0 0.0 0.0 -0.5 0.0 -1.0 -0.5 -1.0 -1.0 0.0 -1.0 -3.0 -2.5 -0.5 0.0 0.0 0.5 0.0 -1.0 0.0 1.0 1.0 0.0 0.0 2.0 1.5 0.5 0.0 0.0 -0.5 0.0 1.0 0.0 -1.0 -1.0 0.0 0.0 -2.0 -1.5

worldmap 0.0 0.0 -2.0 -1.0 0.0 0.0 0.0 -2.0 0.0 -2.5 -1.0 0.0 0.0 0.0 0.0 0.0 -2.0 0.0 -3.0 -1.0 -3.0 -1.5 -0.5 0.0 0.0 -2.0 -4.0 -0.5 0.0 0.0 0.0 0.0 0.0 -3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 -1.0

cars03Cropped_d3 0.0 1.0 0.0 0.0 0.0 0.0 0.5 0.0 2.0 0.5 0.0 1.5 0.0 -1.0 0.0 0.0 0.0 0.0 -0.5 0.0 -2.0 -2.0 0.0 -1.5 0.0 -1.0 0.0 -1.0 0.0 0.0 -0.5 0.0 -2.0 -0.5 0.0 -1.5

fisheries_clusteredByEscapementTarget -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 2.0 1.0 1.0 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 -2.0 -1.0 -1.0 -1.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 -3.0 -2.0 -2.0 -2.0 -2.0 -3.0 -2.0 -2.0 -3.0 -3.0 -2.5

fisheries_clusteredByHarvestRule 0.0 -0.5 -2.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 0.0 -0.5 -2.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 0.0 0.0 0.0 1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.0 0.0 0.0 0.0 -1.0 -1.5 -1.5 -1.5 -1.5 -1.5 -2.0 -2.0

yeast 1.0 1.0 1.0 1.0 1.0 2.0 1.5 1.0 1.0 1.0

ecoliproteins 0.0 1.0 0.0 0.0 0.0 -0.5 -4.0 0.5 0.0 -1.0 0.0 0.0 0.0 0.5 4.0 -0.5

efashion 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5

tse300 -0.5 0.0 0.5 0.0 -0.5 0.0 0.0 0.0 -0.5 0.0 -0.5 0.0 -0.5 0.0 0.0 0.0 0.5 -1.5 -0.5 -2.0 0.5 -1.0 -2.5 0.0 -4.0 -3.0 -2.0 -3.5 -4.0 -1.5 -3.0 0.0

cereal 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

shuttle_big 0.0 0.0 0.0 -0.5 -0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.5 -0.5 -0.5

shuttle_small 0.5 0.0 0.0 -1.0 0.0 3.0 3.5 -0.5 0.0 0.0 1.0 0.0 -3.0 -3.5

musicnetgroups 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 -1.5 -1.0 0.0 0.0 0.0 0.0 -4.0 -4.0 -2.5

hiv 1.0 0.0 -1.0 -0.5 0.0 0.0 -1.0 0.0 1.0 0.5 0.0 0.0

bbdm13 2.5 2.0 0.0 1.0 2.0 -3.0 -2.0 0.0 -1.0 -2.0 -2.5 -2.0 0.0 -1.0 -2.0

white_ballance 0.0 -1.0 0.0 0.5 0.0 0.0 -1.0 0.0 -0.5 0.0 0.0 1.0 -0.5 -0.5 -0.5

world_11d -0.5 -1.5 -2.0 0.0 -0.5 -0.5 -0.5 -2.5 -0.5 -2.0 0.5 0.5 2.0 0.0 0.5 -2.5 -1.5 -2.5 -1.0 -2.0

world_9d -1.0 -1.5 -3.5 0.5 -1.0 1.0 1.5 3.5 -0.5 1.0 -3.0 -2.5 -3.5 -2.0 -3.0

boston -1.5 -1.5 -3.0 -1.0 -1.0 -3.0 -0.5 0.5 0.0 0.5 -0.5 0.0

iris 0.0 0.5 0.5 0.0 -0.5 -0.5 0.0 -1.0 -1.0 0.0 -2.5 -2.5

olive -2.0 0.0 -1.5 -2.0 0.0 -1.5 -0.5 0.0 -0.5 0.5 0.0 0.5

swanson 0.0 0.0 -0.5 0.0 0.0 -1.5 0.0 0.0 0.5

wine -1.0 -1.5 -2.5 0.0 -1.5 -2.5 -0.5 0.5 1.0 0.0 -0.5 -1.0

breast-cancer-wisconsin 0.0 0.0 0.0 0.0 -0.5 -1.0

cars03Cropped_d1 -1.5 -1.5 1.5 1.5 -1.5 -1.5

ionosphere -0.5 -0.5 0.5 0.5

parkinsons_abs_croped -1.5 -1.5 -1.5 -1.5 1.5 1.5

spambase 0.0 0.5 0.0 -0.5

wdbc_class_1_2 -0.5 -0.5 0.0 0.0 0.0 0.0 -2.5 -2.0

n100-d10-c5-spr0.1-out0 0.5 0.0 1.0 0.0 0.5 -3.0 0.0 -4.0 0.0 -3.0 -2.0 -2.0 -3.0 -2.5 -2.5 -0.5 -0.5 -1.0 -1.5 -0.5

n100-d10-c5-spr0.2-out0 0.0 -1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 -1.0 -2.0 -0.5 -1.5 -0.5 -1.0 -2.5 -0.5 -2.5 -0.5

n100-d5-c5-spr0.1-out0 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 -0.5 -0.5 -2.0 -0.5 -1.0 0.5 -0.5 -2.0 -1.0 -2.0 -1.5

n100-d5-c5-spr0.2-out0 0.0 -0.5 0.0 0.5 -0.5 -0.5 -1.0 -0.5 -1.0 -0.5 0.0 0.5 0.0 -0.5 0.5 -1.0 -1.0 -0.5 -1.0 -0.5

n500-d10-c5-spr0.1-out0 0.0 -1.5 -1.5 -0.5 0.0 0.0 -1.5 -1.5 -0.5 0.0 -1.0 -3.0 -2.0 -0.5 0.0 0.0 1.5 1.5 0.5 0.0

n500-d10-c5-spr0.2-out0 0.0 0.0 -0.5 -1.5 0.0 0.0 0.0 -0.5 -1.5 0.0 -1.0 -1.5 -0.5 -1.5 -1.5 -1.0 -1.0 0.5 1.5 -1.0

n500-d5-c5-spr0.1-out0 -0.5 0.0 -0.5 0.0 0.0 -0.5 0.0 -0.5 0.0 0.0 -0.5 -1.0 0.0 0.0 0.0 0.5 -1.0 0.0 -0.5 0.0

n500-d5-c5-spr0.2-out0 -1.0 0.0 -0.5 -0.5 -0.5 1.0 0.0 0.5 0.5 0.5 -1.0 -0.5 -0.5 -0.5 -2.0 -1.0 -0.5 -0.5 -0.5 -2.0

n100-d10-c3-spr0.1-out0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0 -1.5 -2.0 -1.0

n100-d10-c3-spr0.2-out0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -1.0 -1.0 -2.5 -1.5 -1.5

n100-d5-c3-spr0.1-out0 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 -1.0 -0.5

n100-d5-c3-spr0.2-out0 0.0 0.5 0.0 -0.5 -0.5 0.0 -2.0 -2.5 -2.5 0.0 -1.0 -1.0

n500-d10-c3-spr0.1-out0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n500-d10-c3-spr0.2-out0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 -2.0 -1.5 -1.0

n500-d5-c3-spr0.1-out0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 0.0 -0.5 -0.5

n500-d5-c3-spr0.2-out0 0.5 0.0 -0.5 -0.5 0.0 0.5 -1.5 -0.5 -1.0 -1.5 -0.5 -1.0

interleaved_100_200_15d_0_notcramped_notrotated -2.0 -2.5 -4.0 -4.0 -3.0 -1.5 -4.0 -2.5 -4.0 -2.0 -3.5 -4.0 -2.0 -3.5 -1.5 -2.5 -2.5 -4.0 -4.0 -3.5 -1.0 -4.0 -2.5 -4.0 -1.5 -3.5 -4.0 -1.5 -3.5 -1.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 2.0 2.5 4.0 4.0 3.0 1.0 4.0 2.5 4.0 1.5 3.5 4.0 1.5 3.5 1.0

interleaved_100_200_15d_25_cramped_rotated -4.0 -2.0 -4.0 -1.5 -4.0 -3.0 -4.0 -4.0 -4.0 -2.0 -3.0 -3.0 -3.0 -2.0 -1.5 -4.0 -2.0 -4.0 -1.5 -4.0 -3.0 -4.0 -4.0 -4.0 -2.0 -3.0 -3.0 -3.0 -2.0 -1.5 -4.0 -4.0 -4.0 -4.0 -4.0 -3.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.0 -4.0 4.0 2.0 4.0 1.5 4.0 3.0 4.0 4.0 4.0 2.0 3.0 3.0 3.0 2.0 1.5

interleaved_100_200_10d_0_notcramped_notrotated -0.5 0.0 -1.5 0.0 -4.0 -4.0 -2.0 -0.5 -3.5 -3.5 -1.0 0.0 -1.5 0.0 -4.0 -4.0 -2.0 -0.5 -3.5 -4.0 -3.0 -2.0 -3.0 -2.0 -3.5 -3.5 -3.5 -2.0 -3.5 -3.5 0.5 0.0 1.5 0.0 3.5 3.5 2.0 0.5 3.5 3.5

interleaved_100_200_10d_25_cramped_rotated -2.5 -2.0 -3.0 -4.0 -2.5 -1.0 -2.5 -1.0 -1.0 -4.0 -2.5 -2.5 -3.0 -4.0 -3.0 -1.0 -2.5 -1.0 -1.0 -4.0 -4.0 -4.0 -3.5 -4.0 -4.0 -4.0 -3.5 -4.0 -4.0 -4.0 2.5 2.0 3.0 4.0 2.5 1.0 2.5 1.0 1.0 4.0

interleaved_100_200_6d_0_notcramped_notrotated -2.5 -2.0 -2.0 -0.5 -1.5 0.0 -2.5 -1.0 -2.0 -1.0 -1.0 0.0 -3.5 -1.0 -1.5 -2.0 -1.5 0.0 2.5 1.0 1.5 0.5 1.0 0.0

interleaved_100_200_6d_25_cramped_rotated 0.0 -1.5 -1.0 -0.5 -0.5 -1.5 0.0 -1.5 -1.0 -0.5 -0.5 -1.5 -0.5 -1.5 -1.0 -1.5 -1.0 -1.5 0.0 1.5 1.0 0.5 0.5 1.5

interleaved_100_200_5d_0_notcramped_notrotated -2.0 -1.5 -1.5 -1.0 -1.0 -2.0 -1.0 -1.5 -1.0 -1.0 0.0 -3.0 -1.0 -1.5 -1.5 0.0 1.0 1.0 1.0 1.0

interleaved_100_200_5d_25_cramped_rotated 0.0 -1.5 -0.5 -0.5 -0.5 -0.5 -1.5 0.0 -0.5 -0.5 -1.0 -2.0 -0.5 -1.0 -3.0 0.0 1.5 0.0 0.5 0.5

JavierGeneratedData_3dinterleaved_5classes -0.5 -1.0 0.0 -1.0 0.0 0.0 -0.5 -1.0 -0.5 -1.0 -0.5 -1.0 0.0 -1.0 0.0 0.0 0.5 0.0 0.5 0.0

interleaved_100_200_4d_0_notcramped_notrotated -0.5 -1.0 -0.5 0.0 -0.5 -1.0 -0.5 0.0 -1.0 -2.0 -1.0 -1.0 0.5 1.0 0.5 0.0

interleaved_100_200_4d_25_cramped_rotated -2.5 -1.0 -2.0 -0.5 -2.5 -1.0 -2.0 -0.5 0.0 0.0 -2.0 -1.0 0.0 0.0 2.0 0.5

JavierGeneratedData_3dinterleaved_4classes -0.5 -0.5 0.0 -0.5 -0.5 -1.0 -0.5 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_500_3_25_cramped_rotated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5

interleaved_250_500_3_0_notCramped_rotated 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -1.0

JavierGeneratedData_3dinterleaved_3classes -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 0.0 0.0 0.0 0.0 0.0

ms_interleaved_120_240_3d_25_centeredClusters 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -1.0 -2.0 -1.5

ms_interleaved_120_240_3d_50_centeredClusters 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.5 -1.5 -1.5

ms_interleaved_40_80_3d_0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.5 -1.5 -0.5

ms_interleaved_40_80_3d_50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5

ms_interleaved_400_800_3d_0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -2.5

ms_interleaved_400_800_3d_50 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 -1.5 -1.5 -1.5

ms_interleaved_60_120_3d_0_centeredClusters 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ms_interleaved_60_120_3d_25_centeredClusters 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -1.0 -0.5

ms_interleaved_60_120_3d_50_centeredClusters -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 -2.0 -2.0 -2.0

grid6_4d -3.5 -2.5 -2.5 -3.5 -4.0 -4.0 -4.0 -4.0 -3.0 -4.0 -3.5 -3.0 -4.0 -4.0 -4.0 -4.0 -3.5 -2.5 -2.5 -3.5 1.5 2.0 0.0 -4.0 -3.0 -4.0 -3.5 -3.0 0.0 0.0 0.0 0.5 -3.0 -2.0 -2.0 -3.0 -3.5 -3.5 -3.5 -3.5 -2.5 -3.5 -3.0 -2.5 -3.5 -3.5 -3.5 -3.5 3.0 2.0 2.0 3.0 -1.5 -2.0 0.0 3.5 2.5 3.5 3.0 2.5 0.0 0.0 0.0 -0.5

grid10_3d -3.0 -4.0 -3.0 -4.0 1.0 0.0 1.0 0.5 0.0 -1.0 0.5 -3.5 -3.5 -1.0 -1.0 -1.0 -1.5 -2.5 -1.0 -2.5 -2.5 -2.0 -2.5 -2.5 0.0 1.0 -0.5 2.5 -1.0 0.0 -1.5 -0.5

twosquare-nome -3.5 -2.5 0.0 0.0 -3.5 -2.5 0.0 0.0 -3.5 -3.5 -4.0 -4.0 3.5 2.5 -0.5 -0.5

UnEvenDensity-nome 0.0 0.0 0.0 0.0 -0.5 0.0

(a) 2D – 2D from other DRs

PCA robust PCA glimmer MDS t-SNE
dataset family pca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2dpca -SPLOM better than 2d robpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2drobpca -SPLOM better than 2d glimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2dglimmer - SPLOM better than 2d tsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2dtsne - SPLOM better than 2d

abalone real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cars03Cropped_d2 real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

italianwines real 3.0 3.0 1.0 0.5 1.5 2.0 2.0 2.0 2.0 2.5 2.5 1.0 1.5 3.0 3.0 1.0 0.5 2.5 2.0 2.0 2.0 1.5 2.5 2.0 1.0 1.5 -1.0 0.5 1.5 0.0 0.5 -0.5 0.0 -0.5 -0.5 0.0 0.5 0.0 1.0 0.5 1.0 1.0 0.0 0.5 -1.0 0.5 -0.5 -1.0 0.0 0.5 -1.5 0.0

worldmap real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cars03Cropped_d3 real 0.0 0.0 0.0 0.0 0.0 0.5 1.5 0.5 0.5 0.5 0.0 -0.5 0.0 0.5 0.0 0.0 0.5 0.0 2.0 0.0 -1.5 0.5 0.0 -1.5 0.0 -1.0 0.0 -1.0 0.0 0.0 -0.5 0.0 -2.0 -1.0 0.0 -1.5

fisheries_clusteredByEscapementTarget real -1.0 -1.0 -1.0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 -1.5 -1.0 -1.0 -1.0 -0.5 -1.0 -1.0 -1.0 -1.0 -1.5 -1.5

fisheries_clusteredByHarvestRule real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -3.5 -3.5 -3.5 -3.5 -3.0 -3.0

yeast real 0.0 0.0 0.0 0.0 0.0 -1.0 -0.5 0.0 0.0 0.0

ecoliproteins real 0.0 0.0 0.0 4.0 0.0 2.5 0.0 0.5 0.0 -0.5 0.0 1.0 -0.5 2.0 0.0 1.5

efashion real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 -1.0

tse300 real -0.5 0.0 -0.5 0.0 -0.5 0.5 0.0 0.0 -0.5 0.0 -0.5 0.0 -0.5 1.0 0.0 0.0 -0.5 -1.5 -0.5 -2.0 -0.5 1.0 -2.0 0.0 -4.0 -3.0 -2.0 -3.5 -4.0 -1.5 -3.0 0.0

cereal real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

shuttle_big real 0.0 0.0 0.0 -0.5 -0.5 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5

shuttle_small real 0.5 0.0 0.5 0.0 0.5 0.0 0.0 -0.5 0.0 0.0 -1.0 -0.5 -4.0 -4.0

musicnetgroups real 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.5 -0.5 0.0 0.0 0.0 0.0 -1.0 -3.0 -0.5

hiv real 1.0 1.0 -1.0 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 0.0

bbdm13 real 1.0 1.0 2.5 1.5 2.0 -3.0 -2.0 0.0 -1.0 -2.0 -2.5 -2.0 0.0 -1.0 -2.0

white_ballance real 2.0 0.5 0.0 0.0 0.5 0.5 1.0 0.5 1.5 0.5 0.0 0.5 0.0 0.5 -0.5

world_11d real 0.0 0.0 0.5 0.5 0.0 -0.5 0.0 0.5 0.0 0.0 0.0 0.5 1.5 1.5 0.5 -1.0 -1.0 -0.5 -0.5 -0.5

world_9d real 0.0 0.0 -0.5 0.0 0.5 0.0 0.5 -0.5 -1.0 0.5 -1.0 -0.5 -2.5 -1.5 0.0

boston real -0.5 1.0 0.5 -1.0 -1.0 -3.0 -0.5 1.0 0.5 -0.5 0.5 0.5

iris real 0.0 0.0 0.0 0.0 -0.5 -0.5 0.0 -0.5 -0.5 0.0 -1.5 -2.0

olive real -2.0 0.0 -1.5 -2.0 0.0 -1.5 -0.5 0.0 -0.5 0.0 0.0 0.0

swanson real 0.0 0.0 -0.5 0.0 0.0 -1.5 0.0 0.0 0.0

wine real -0.5 0.0 -1.0 0.0 0.5 -0.5 -0.5 0.0 0.5 0.5 0.5 0.5

breast-cancer-wisconsin real 0.0 0.0 0.0 0.0 0.5 0.5

cars03Cropped_d1 real -0.5 -0.5 0.0 0.0 -1.0 -1.0

ionosphere real 0.5 1.0 0.0 0.0

parkinsons_abs_croped real -1.5 -2.0 -1.0 -1.5 0.0 -0.5

spambase real 2.0 1.5 0.5 0.0

wdbc_class_1_2 real 0.5 0.5 0.0 0.0 0.0 0.0 -1.5 -1.0

n100-d10-c5-spr0.1-out0 gaussian 1.0 0.0 0.0 0.0 0.5 1.0 0.0 -0.5 0.0 0.5 0.5 -1.0 0.0 -1.5 -0.5 0.5 -0.5 -0.5 -1.5 0.0

n100-d10-c5-spr0.2-out0 gaussian 0.5 -1.0 1.5 0.0 1.5 -0.5 -0.5 1.5 0.0 2.0 -0.5 -1.5 1.0 -1.0 1.0 -0.5 -1.5 1.5 -0.5 1.0

n100-d5-c5-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 -0.5 -0.5 -1.5 -0.5 -1.5 0.0 0.0 -0.5 -0.5 -1.0 -1.0

n100-d5-c5-spr0.2-out0 gaussian 0.0 -0.5 0.0 0.0 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 0.0 0.0 0.0 -0.5 -1.0 -1.0 -0.5 -0.5 0.0 0.0

n500-d10-c5-spr0.1-out0 gaussian 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -2.5 -1.5 -0.5 0.0 0.0 -0.5 -1.0 0.0 0.0

n500-d10-c5-spr0.2-out0 gaussian 0.0 0.5 0.5 0.5 0.0 0.5 0.0 0.5 1.0 0.0 -1.0 -0.5 0.0 -0.5 -1.0 0.0 -0.5 0.0 0.0 -1.5

n500-d5-c5-spr0.1-out0 gaussian -0.5 0.0 0.0 0.0 0.5 -0.5 0.0 0.0 0.0 0.5 -0.5 -0.5 0.0 1.0 0.0 0.0 -0.5 0.0 0.0 1.0

n500-d5-c5-spr0.2-out0 gaussian -1.0 0.0 0.5 -0.5 -0.5 -0.5 0.0 0.5 0.0 0.5 -1.0 0.0 0.0 0.5 -0.5 -0.5 0.5 0.5 0.0 -0.5

n100-d10-c3-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0

n100-d10-c3-spr0.2-out0 gaussian 0.0 0.0 0.0 0.5 0.0 0.0 0.0 -0.5 0.5 -0.5 -0.5 -0.5

n100-d5-c3-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n100-d5-c3-spr0.2-out0 gaussian 0.5 0.0 0.0 0.5 -0.5 0.0 -0.5 -1.0 -1.0 0.5 -0.5 0.0

n500-d10-c3-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n500-d10-c3-spr0.2-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -2.0 -1.0 -1.5

n500-d5-c3-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 0.0 -0.5 -0.5

n500-d5-c3-spr0.2-out0 gaussian 0.0 0.0 -0.5 -0.5 0.0 0.0 -1.5 -0.5 -1.0 -1.5 -0.5 -1.0

interleaved_100_200_15d_0_notcramped_notrotated interleaved -1.0 -1.5 -2.5 -2.0 -2.5 -1.5 -2.0 -1.0 -2.5 -1.5 -0.5 -1.0 -2.5 -2.5 -1.5 -1.5 -2.0 -3.0 -1.5 -3.5 -1.0 -1.5 -1.0 -2.5 -1.0 -0.5 -1.5 -2.0 -2.5 -1.0 -3.0 -2.5 -3.0 -3.5 -2.5 -2.5 -2.0 -1.5 -2.5 -3.0 -2.5 -3.5 -2.5 -3.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_15d_25_cramped_rotated interleaved -4.0 -1.5 -3.0 -1.5 -0.5 -1.5 -2.5 -2.0 -3.0 -1.0 -2.5 -2.0 -3.5 -2.5 -1.5 -4.0 -1.5 -3.0 -1.5 -0.5 -1.0 -2.5 -2.5 -3.0 -1.5 -2.5 -2.5 -3.5 -2.5 -1.5 -3.0 -2.5 -3.5 -2.5 -1.5 -2.0 -1.5 -1.5 -3.0 -2.5 -3.0 -3.5 -3.0 -3.0 -3.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_10d_0_notcramped_notrotated interleaved -0.5 0.0 -1.5 0.0 0.0 0.0 -2.0 -0.5 -1.5 -2.0 -0.5 -0.5 -1.5 0.0 0.0 -0.5 -2.0 -0.5 -2.5 -2.5 -2.0 -2.0 -2.0 -2.0 -1.0 -2.0 -2.0 -1.5 -2.5 -1.5 0.0 -0.5 -0.5 0.0 0.0 0.0 -1.0 0.0 0.0 0.0

interleaved_100_200_10d_25_cramped_rotated interleaved -1.5 -2.0 0.0 -1.5 -0.5 -1.5 -2.0 -1.5 -0.5 -2.0 -1.5 -2.0 0.0 -2.0 -0.5 -2.0 -2.0 -1.5 -1.0 -2.0 -2.0 -3.5 -2.0 -2.5 -1.5 -2.5 -1.5 -2.5 -2.0 -3.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_6d_0_notcramped_notrotated interleaved -1.5 -0.5 -0.5 -0.5 -0.5 0.0 -1.5 -0.5 -1.0 -1.0 -1.0 0.0 -2.0 -0.5 -1.0 -1.0 -0.5 -0.5 0.0 0.0 0.0 0.5 0.5 0.0

interleaved_100_200_6d_25_cramped_rotated interleaved 0.0 -1.0 -1.0 -0.5 -0.5 -0.5 0.0 -1.0 -1.0 -0.5 -0.5 -0.5 -1.0 -1.0 -1.0 -2.0 -1.0 -0.5 0.5 0.0 0.5 0.0 0.0 0.5

interleaved_100_200_5d_0_notcramped_notrotated interleaved -2.0 -1.5 -0.5 -0.5 -0.5 -1.5 -1.0 -1.0 -0.5 -0.5 0.0 -1.0 -0.5 0.0 -1.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_5d_25_cramped_rotated interleaved 0.0 0.0 0.0 -1.0 -1.0 -0.5 0.0 0.0 -0.5 -0.5 -0.5 0.0 -0.5 -0.5 -1.0 0.0 0.0 0.5 0.0 0.0

JavierGeneratedData_3dinterleaved_5classes interleaved 0.0 -0.5 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 0.5 0.0 0.0 0.0 0.0

interleaved_100_200_4d_0_notcramped_notrotated interleaved -0.5 -0.5 -0.5 0.5 -0.5 -0.5 -0.5 0.5 -1.5 -1.0 -1.0 0.5 0.0 0.0 0.0 1.0

interleaved_100_200_4d_25_cramped_rotated interleaved 0.0 -0.5 -1.0 -0.5 0.0 -0.5 -1.0 -0.5 0.5 0.0 -1.0 -0.5 0.5 0.0 0.5 0.0

JavierGeneratedData_3dinterleaved_4classes interleaved -0.5 -0.5 0.0 -0.5 -0.5 -0.5 -0.5 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_500_3_25_cramped_rotated interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0

interleaved_250_500_3_0_notCramped_rotated interleaved 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5 -1.0 -0.5

JavierGeneratedData_3dinterleaved_3classes interleaved -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 -0.5 -0.5 0.0 0.0 0.0

ms_interleaved_120_240_3d_25_centeredClusters interleaved -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -1.0 -0.5 -0.5 -0.5 -0.5 -1.0

ms_interleaved_120_240_3d_50_centeredClusters interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.5 -1.5 -1.5

ms_interleaved_40_80_3d_0 interleaved 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 0.0 0.0 0.0

ms_interleaved_40_80_3d_50 interleaved 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

ms_interleaved_400_800_3d_0 interleaved 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5 -0.5 -1.5

ms_interleaved_400_800_3d_50 interleaved -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 0.0 -1.5 -1.5 -1.5

ms_interleaved_60_120_3d_0_centeredClusters interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ms_interleaved_60_120_3d_25_centeredClusters interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 0.0 -0.5 0.0

ms_interleaved_60_120_3d_50_centeredClusters interleaved -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 0.0 0.0 -1.0 -1.0 -1.0

grid6_4d grid -3.5 -2.5 -2.5 -3.5 -4.0 -4.0 -4.0 -4.0 -3.0 -4.0 -3.5 -3.0 -4.0 -4.0 -4.0 -4.0 -3.0 -2.5 -2.5 0.5 0.0 0.0 0.0 0.0 1.0 0.0 -3.5 -3.0 0.0 -4.0 0.0 0.0 -2.0 -2.0 -0.5 -2.0 -3.0 -2.0 -2.5 -3.0 -2.0 -3.0 -3.0 -2.0 -3.0 -2.0 -2.5 -2.0 -1.0 0.5 0.5 0.0 -0.5 -0.5 -1.0 -1.0 0.0 -1.0 -0.5 0.0 -1.0 -1.0 -1.5 -1.5

grid10_3d grid -2.5 -3.5 -2.5 -3.5 0.0 0.0 0.0 0.0 0.0 -1.0 0.5 -0.5 -0.5 -0.5 -1.0 -1.0 0.0 -2.0 0.0 -1.0 -1.0 -1.0 -1.5 -1.0 1.0 -1.5 1.0 -0.5 0.0 -1.5 -1.0 -1.5

twosquare-nome grid 0.5 0.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 -0.5 -0.5 0.0 0.0 -0.5 -0.5

UnEvenDensity-nome grid 0.0 0.0 0.0 0.0 0.0 -0.5

(b) SPLOM – 2D from all DRs

PCA robust PCA glimmer MDS t-SNE
dataset family pca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOMpca- 3d better than 2D / PCA SPLOM robpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOMrobpca- 3d better than 2D / PCA SPLOM glimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOMglimmer - 3d better than 2D / glimmer SPLOM tsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOMtsne - 3d better than 2D / tsne SPLOM

abalone real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

cars03Cropped_d2 real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

italianwines real -2.0 -1.0 0.5 1.0 -0.5 -1.0 -0.5 -1.0 -1.0 -0.5 -0.5 -0.5 -0.5 0.0 -1.5 0.0 0.5 -1.0 -1.5 -1.0 -1.5 -1.5 -1.0 -1.0 -0.5 -0.5 -4.0 -2.0 0.5 -1.0 -2.5 -2.5 -1.5 -3.0 -3.0 -2.5 -2.0 -0.5 -1.0 -3.0 -2.0 -1.5 -1.0 -2.5 -3.0 -2.0 -3.0 -3.0 -2.5 -3.0 -3.0 -1.5

worldmap real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -1.0 0.0 -0.5

cars03Cropped_d3 real 1.0 -1.5 0.5 -1.0 -0.5 -0.5 -2.0 0.0 -1.0 0.0 0.0 -1.5 0.0 -1.0 0.0 0.0 -0.5 -0.5 -2.0 -0.5 -2.5 -2.5 0.0 -1.5 0.5 -1.5 0.0 -0.5 -0.5 -0.5 -1.0 0.0 -2.5 0.0 0.0 0.0

fisheries_clusteredByEscapementTarget real -2.0 -2.0 -2.5 -2.0 -2.0 -2.0 -2.5 -3.0 -3.0 -3.0 -3.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 -0.5 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5 -2.5 -1.5 -2.0 -2.0 -2.0 -1.5 -1.5 -2.5 -2.5 -2.5 -2.5

fisheries_clusteredByHarvestRule real 0.0 -0.5 -0.5 -0.5 -0.5 -0.5 -1.0 -2.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -1.0 -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

yeast real 0.0 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0

ecoliproteins real 0.0 1.0 0.0 -4.0 0.5 -3.0 -3.5 -0.5 -1.0 -2.0 0.0 -4.0 0.0 -1.0 -0.5 -0.5

efashion real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5

tse300 real -0.5 -0.5 0.0 -0.5 0.0 1.0 0.0 0.0 0.0 -0.5 0.0 -0.5 0.0 1.0 0.0 0.0 -0.5 -1.5 -0.5 -2.0 -0.5 -1.0 -2.0 0.0 -4.0 -3.0 -2.0 -3.5 -4.0 -2.5 -3.0 0.0

cereal real -4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

shuttle_big real 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5

shuttle_small real -0.5 0.0 0.0 0.0 0.5 0.0 0.0 -1.0 0.0 -0.5 -1.0 -1.0 -4.0 -4.0

musicnetgroups real 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 -2.5 -4.0 -2.5

hiv real -0.5 0.5 -1.0 -1.0 -0.5 0.0 -2.0 -0.5 -1.0 -1.5 -0.5 0.0

bbdm13 real 0.0 0.5 0.5 0.5 0.0 -4.0 -3.0 -2.5 -2.5 -4.0 -4.0 -3.0 -2.5 -2.5 -4.0

white_ballance real -1.0 -2.0 -1.0 -2.0 -0.5 0.0 -2.0 -1.0 -2.0 -0.5 -1.0 -1.0 -1.5 -0.5 -1.0

world_11d real -0.5 -1.0 -2.5 -1.5 -1.0 0.0 -1.0 -2.0 -1.5 -1.0 0.0 0.0 0.0 -1.0 0.0 -1.0 -1.5 -2.0 -2.5 -0.5

world_9d real 0.0 -0.5 -3.5 0.0 -1.0 0.0 0.0 0.0 0.0 -0.5 -2.0 -2.0 -3.5 -1.5 0.0

boston real -1.0 -1.5 -2.5 0.0 -1.5 -3.0 0.0 0.0 0.0 -0.5 -0.5 -0.5

iris real 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 0.0 -2.0 -2.5

olive real -1.5 0.0 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 -0.5

swanson real 0.0 0.0 -1.5 0.0 0.0 -1.5 0.0 0.0 -1.5

wine real -1.5 -2.0 -3.0 0.0 -1.5 -2.5 -0.5 0.0 0.0 -1.0 -0.5 -1.5

breast-cancer-wisconsin real -0.5 -0.5 -0.5 -1.0 -0.5 -0.5

cars03Cropped_d1 real 0.5 0.5 0.0 0.0 -0.5 -0.5

ionosphere real 0.5 0.0 -0.5 -1.0

parkinsons_abs_croped real -1.5 -1.5 0.0 -2.0 0.0 -0.5

spambase real -2.0 -2.0 -1.5 -1.5

wdbc_class_1_2 real -1.0 -0.5 0.0 -0.5 -0.5 -0.5 -3.5 -1.5

n100-d10-c5-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.5 0.0 0.0 -0.5 0.0 -0.5 -0.5 -0.5 -0.5 -1.0 0.0 -0.5 -1.0 -1.0 -0.5 0.0

n100-d10-c5-spr0.2-out0 gaussian -1.5 -2.0 -1.0 0.0 -0.5 0.0 -2.0 -1.5 -1.0 0.0 -1.5 -2.5 -1.5 -2.0 -2.5 -1.0 -2.0 -1.5 -2.0 -2.0

n100-d5-c5-spr0.1-out0 gaussian -0.5 0.5 0.0 -0.5 0.0 0.0 0.0 -0.5 -0.5 0.0 -0.5 -0.5 -1.0 -1.0 -0.5 -0.5 -2.0 -1.0 -1.5 0.0

n100-d5-c5-spr0.2-out0 gaussian 0.0 -0.5 -0.5 0.0 -1.5 0.0 0.0 0.0 -0.5 -0.5 -0.5 -0.5 0.0 -1.0 -1.5 -0.5 0.0 0.0 0.0 0.5

n500-d10-c5-spr0.1-out0 gaussian 0.0 -1.0 -0.5 -0.5 -0.5 0.0 -1.5 -1.0 -1.0 -1.0 -0.5 -0.5 0.0 -0.5 -0.5 0.0 0.5 0.5 0.0 0.0

n500-d10-c5-spr0.2-out0 gaussian 1.0 0.0 1.5 0.5 0.5 0.0 0.0 1.0 0.5 0.5 -1.5 -2.0 -1.0 -2.5 -1.5 -1.0 -0.5 0.0 -1.0 -0.5

n500-d5-c5-spr0.1-out0 gaussian 0.0 0.5 0.5 -0.5 0.0 0.0 1.0 0.5 0.0 0.0 0.0 0.5 1.5 -0.5 -0.5 0.0 -1.0 0.0 -1.0 -0.5

n500-d5-c5-spr0.2-out0 gaussian -0.5 0.0 0.0 0.0 -0.5 0.0 0.5 0.0 -0.5 0.0 -0.5 0.0 -0.5 -0.5 -1.5 -0.5 -1.0 -0.5 -0.5 -2.0

n100-d10-c3-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5

n100-d10-c3-spr0.2-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 -1.0 -1.0 -1.5 -1.0 -1.5

n100-d5-c3-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n100-d5-c3-spr0.2-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0 -0.5 -1.5 -1.5 -1.0

n500-d10-c3-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n500-d10-c3-spr0.2-out0 gaussian 0.0 0.5 0.0 0.0 0.5 0.0 -1.0 -0.5 -1.0 -2.0 -1.5 -2.0

n500-d5-c3-spr0.1-out0 gaussian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5

n500-d5-c3-spr0.2-out0 gaussian -0.5 0.5 0.0 0.0 0.5 0.0 -1.0 0.0 -0.5 -1.5 -0.5 -1.0

interleaved_100_200_15d_0_notcramped_notrotated interleaved 0.0 0.0 0.0 -2.5 -3.0 0.0 -1.5 0.0 -2.5 -1.0 -2.5 -1.0 -1.0 -2.0 -0.5 0.0 0.0 0.0 -2.0 -3.0 0.0 -2.0 0.0 -3.0 -0.5 -2.5 -1.5 -1.5 -1.0 -0.5 -2.5 -3.5 -3.0 -3.5 -3.5 -3.5 -4.0 -3.5 -3.5 -3.0 -3.0 -3.5 -3.0 -3.5 -2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_15d_25_cramped_rotated interleaved -2.5 -0.5 -2.5 -0.5 -2.5 -1.5 -2.5 -0.5 -3.5 -0.5 -3.0 -1.5 -2.5 -1.0 -1.0 0.0 -1.0 -2.5 0.0 -2.0 -1.5 -2.5 -1.0 -3.5 -0.5 -3.0 -1.0 -2.0 -1.0 -1.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.5 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.0 -4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0

interleaved_100_200_10d_0_notcramped_notrotated interleaved 0.0 0.0 -1.0 0.0 -0.5 -2.0 -1.5 0.0 -3.0 -2.0 0.0 0.0 -1.0 0.0 -0.5 -2.5 -2.5 0.0 -3.0 -2.5 -2.0 -1.5 -1.5 -1.0 -3.0 -3.0 -3.0 -1.0 -3.0 -3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_10d_25_cramped_rotated interleaved -1.0 -1.0 0.0 -3.0 0.0 0.0 -1.5 0.0 -0.5 -3.0 0.0 -1.5 0.0 -3.0 0.0 0.0 -1.5 0.0 -1.0 -3.0 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_6d_0_notcramped_notrotated interleaved -1.0 0.5 -0.5 -0.5 -0.5 0.5 0.0 0.5 -0.5 -0.5 -0.5 0.5 -1.0 0.0 -0.5 -1.0 -1.0 0.0 0.0 0.5 -0.5 -0.5 0.0 0.5

interleaved_100_200_6d_25_cramped_rotated interleaved -0.5 -0.5 0.0 -0.5 -0.5 0.0 0.0 -0.5 0.0 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 -0.5 -0.5 -0.5 0.0 0.0 0.5 0.0 0.0 0.0

interleaved_100_200_5d_0_notcramped_notrotated interleaved 0.5 0.5 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.0 0.5 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_5d_25_cramped_rotated interleaved 1.5 0.5 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 -0.5 0.5 0.0

JavierGeneratedData_3dinterleaved_5classes interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_200_4d_0_notcramped_notrotated interleaved 0.5 0.0 0.5 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.5 1.0 0.0 0.0 0.0 0.0

interleaved_100_200_4d_25_cramped_rotated interleaved 0.5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 -0.5 0.0 0.5 0.5 0.0 0.0

JavierGeneratedData_3dinterleaved_4classes interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

interleaved_100_500_3_25_cramped_rotated interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -1.0

interleaved_250_500_3_0_notCramped_rotated interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 0.0

JavierGeneratedData_3dinterleaved_3classes interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ms_interleaved_120_240_3d_25_centeredClusters interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -1.0 -1.0

ms_interleaved_120_240_3d_50_centeredClusters interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.5 -1.5 -1.0

ms_interleaved_40_80_3d_0 interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ms_interleaved_40_80_3d_50 interleaved 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 -0.5 -0.5 -0.5

ms_interleaved_400_800_3d_0 interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -2.0

ms_interleaved_400_800_3d_50 interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.5 -1.5 -1.5

ms_interleaved_60_120_3d_0_centeredClusters interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ms_interleaved_60_120_3d_25_centeredClusters interleaved 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ms_interleaved_60_120_3d_50_centeredClusters interleaved 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 -0.5 -0.5 0.0 0.0 0.0

grid6_4d grid -3.5 -3.0 -3.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -3.5 -3.0 -4.0 -4.0 -4.0 -4.0 0.0 -2.0 -2.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -2.5 -2.0 -3.0 -3.0 -3.0 -3.0 -2.5 -2.0 -2.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -2.5 -2.0 -3.0 -3.0 -3.0 -3.0 -1.5 -1.0 -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.5 -1.0 -2.0 -2.0 -2.0 -2.0

grid10_3d grid -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 0.0 -0.5 0.0 0.0 0.0 -0.5 -0.5 -1.5

twosquare-nome grid 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

UnEvenDensity-nome grid 0.0 0.0 0.0 0.0 0.0 -0.5

(c) i3D – max (SPLOM, 2D from all DRs)

Fig. 6. Cross-DR differences. Red = another configuration is better, Blue = this configuration is best. (a) 2D compared to all other DRs in 2D. (b)
SPLOM compared to all DRs in 2D. (c) i3D compared to SPLOM and all DRs in 2D.

Inspecting Figure 3(b) reveals that i3D rarely helps compared to
the best of 2D and SPLOM, and sometimes actually hurts. That is,
i3D shows less class structure, visible as red cells with notable or sub-
stantial saturation levels, but has higher usage costs. The only notable
blue cells are with the highly artificial entangled and grid datasets,
reflecting our main hypotheses that i3D would work well for these
specifically designed datasets.

Figure 5(a)-(b) shows a simple example of one of our artificial en-
tangled datasets in 3D. The dataset was specifically designed for 3D
and has three oblong and thin classes that cannot be fully distinguished
with any linear 2D projection. Figure 5(c) shows the 2D PCA Scatter-
plot of this dataset. We note that even in this example the 2D Scatter-
plot contains only minimal overlap of the classes, and the clear shape
of the clusters makes the classes easy to tell apart.

Wilcoxon tests showed that ∆(2) was significantly different from
zero only for t-SNE (V = 2514, p <0.001). In this case, i3D was
overall significantly worse than 2D and SPLOM for t-SNE.

5.3 Scatterplot Choices: Cross-DR
The analysis presented thus far has focused on scatterplot choices
within a certain DR technique. We now investigate how the three
scatterplot techniques perform cross-DR; that is, how choosing among
different DR techniques influences the VE performance. For that pur-
pose, we first compare how 2D reduced scatterplots compare among
the four DR techniques. We then analyze whether SPLOM or i3D add
additional benefit in such cross-DR explorations.

5.3.1 Cross-DR: 2D
We are interested in understanding whether one DR technique adds no-
table or substantial benefits over all others when analyzing a dataset.
For this purpose, we compare the 2D classwise ratings of one DR tech-
nique to the maximum 2D classwise ratings of the remaining three DR
technique. Formally, this ∆(3) derivation can be written as follows. Let

DR = {pca,rob,mds, tsne}, then

∀dr ∈ DR : ∆(3)
dr = 2ddr− max

∀i∈DR
i 6=dr

(2di)

Visually speaking, we show a cell-wise subtraction between the
four vertical DR sections—the set of columns per DR technique—in
Figure 2(a). For all four DR techniques, we take their respective DR
section and subtract the maximum of the remaining three DR sections.
The results are shown in Figure 6(a), using the same color ramp as
before. Red cells indicate that for this class there is another DR that
better separates it. Blue cells indicate that the specific DR technique
separates this class better than all other techniques. White indicates
that there are no differences across all or a subset of DR techniques.

Interpreting Figure 6(a) reveals a number of datasets for which pick-
ing a different DR technique indeed makes a substantial difference for
many of their classes. This finding is reflected by the high number of
dark red cells indicating the superiority of another DR technique. In
some of these cases, one DR technique is substantially better than all
others, which can be seen by the blue boxes. The most noticeable pat-
tern is that t-SNE has superior performance for many of the entangled
datasets, seen in the ∆(3) : entangled section. Figure 5(e)-(f) gives an
example of a dataset with 15 ground truth classes entangled in 15 di-
mensions. Neither PCA, robust PCA, nor Glimmer MDS, as shown in
Figure 5(e)3, reveals this entangled class structure. In contrast, t-SNE
clearly untangels 15 separable classes as shown in Figure 5(f). Figure
5(d) shows how t-SNE performs on the previously discussed example
of Figure 5; again, t-SNE clearly untangles the classes.

Statistical analysis supported the superior performance of t-SNE.
Wilcoxon tests showed that ∆(3) was significantly different from zero
for PCA, robust PCA, and Glimmer MDS (V >1990, p <0.001 in all

3Screenshots of PCA and robust PCA are in the supplemental material.

Figure 5: A 3D scatter plot from different perspectives. Taken from [26].
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PCA of Gordon Lung Cancer Dataset [2002]

Figure 6: Principal component analysis performed on a lung cancer data set by Gordon et al. [13]
using data of 181 samples. For each sample, 12533 dimensions were measured. The four principal
components with the highest variance are visualized in a scatter plot.

[26] have shown in a user study that the 3D scatter plots do not help users to analyze the data, as
the 3D scatter plots suffer from various limitations such as the perspective or the occlusion of data
points by other data points.

3.2 2D Scatter Plot Matrices

2D scatter plot matrices can basically visualize an arbitrary number of dimensions using 2D scatter
plots [6]. The technique produces a single scatter plot for all combinations of two different dimensions.
As shown in Figure 6 the scatter plots are arranged in a matrix-like layout. The scatter plot in the
i-th row plots the i-th dimension on the vertical axis and the j-th column plots the j-th dimension
on the horizontal axis. This means that the plots in the upper right triangle can be transformed by
linear transformations to the respective plots in the lower left triangle, such that only a triangular
matrix would suffice to plot all available information. However, it is common practice to plot the
full matrix. The diagonal of the matrix cannot contain any plots as plotting the same dimension
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against itself would not yield any usable results and thus is a perfect place to contain the label of
each dimension. In total, when visualizing p dimensions, a total of

n =
p−1∑
i=1

i = 1
2(p− 1) · p (6)

scatter plots are required in each triangle half of the matrix [6]. Thus, the number of required
scatter plots increases quadratically with the number of dimensions, which does not scale from a
human perception perspective.

In general, the various scatter plots reveal the correlation between the different dimensions. However,
only the correlation between two dimensions is perceivable. In addition to that, when dealing with
discrete dimensions scatter plots may trick the viewer as the data points seem to be aligned in rows
or columns compared to a continuous data set.

The scatter plot matrix can also be used to easily spot outliers between the different dimensions,
although it is impossible to compare outliers in multiple scatter plots without interaction techniques.
Brushing scatter plots [4] is an interaction technique that can help identifying outliers and analyzing
clusters. When brushing, certain data points in a single scatter plot of the matrix are selected and
then colored differently in all scatter plots in the matrix. Thus, an analysis of the behavior of a
subset of the data points for different dimensions is possible.

Elmqvist et al. [9] describe a navigation technique for scatter plot matrices. In fact, the approach
uses the scatter plot matrix as navigational element where each scatter plot serves as “thumbnail”
for the respective dimensions. The user can then intuitively navigate through the different scatter
plots to compare and correlate the different dimensions.

3.3 Parallel Coordinate Plots

Parallel coordinate plots [19, 20] are capable of visualizing an arbitrary number of dimensions.
Compared to a scatter plot, the axes of the dimensions are not aligned in an orthogonal layout, but
rather parallel to each other and evenly spaced. Hence, the visualization scales linearly with the
number of dimensions to visualize. There are no assumptions to the ordering of the coordinates within
the visualization. Ideally, when exploring the data the plot is interactive and allows to rearrange the
coordinates to experimentally find meaningful visualizations [21]. In a parallel coordinate plot data
points are represented by polygon lines passing through the respective values on each coordinate.
The geometry and the alignment of the polygon lines can represent the correlation between two
adjacent coordinates. There are specific visual patterns for various correlations and manifolds that
can be used to identify patterns within the data [34].

Parallel coordinate plots can be enriched with various visualization details. For example, each
coordinate can visualize box plots, histograms or violin plots to better visualize the quantity of the
data for the coordinate [31]. In addition to that, the polygon lines may be curved [14] (instead of
straight lines) or brushed [16, 29] to better distinguish single data points from each other. Interaction
techniques in parallel coordinate plots support the perception of the correlations of the underlying
data Artero et al. [2], Panagiotidis et al. [23].
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Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 Dim.10

Figure 7: Principal component analysis performed on a lung cancer data set by Gordon et al. [13]
using data of 181 samples. For each sample, 12533 dimensions were measured. The ten principal
components with the highest variance are visualized in a parallel coordinate plot. The first four
principal components are also visualized as a scatter plot in Figure 6.

4 Evaluation of Existing Techniques

4.1 Dimension Reduction Techniques

In Section 2 four dimension reduction techniques with different characteristics were introduced.
While the introduced techniques are among the commonly used techniques, a sheer amount of other
dimension techniques exists. Currently, there are 34 different dimensionality reduction techniques
implemented in the “Matlab Toolbox for Dimensionality Reduction”1. The dimensionality reduction
techniques were developed for different purposes and different data in mind. When using a dimension
reduction method one should consider the different drawbacks of the various methods available and
choose a method that suits the data being analyzed. Most techniques also have parameters that can
be optimized. van der Maaten et al. [33] provides an extensive comparison of existing techniques,
their parameters, their performance and their error on different data sets.

In addition to that, techniques can be combined in a pipeline to further leverage the strengths of each
individual technique. For example, it is a common practice to estimate the intrinsic dimensionality
d of the given data set and then use a fast dimension reduction technique to reduce the dataset to
its intrinsic dimension. PCA is a candidate for reducing the data to its intrinsic dimension, as the
first d principal components are kept and the remaining principal components only contain very
little additional information. As such, the information loss is minimal and can be estimated by

1http://lvdmaaten.github.io/drtoolbox/
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summing the variances of the dropped principal components. After having a data set in its intrinsic
dimension, expensive and powerful techniques take less computational time to further reduce the
data to its intended dimension.

4.2 Visualization Techniques

In Section 3 three visualization techniques were introduced. This section compares the techniques in
terms of ease of perception, enrichment through interaction and scalability of dimensions.

Scatter plots have an easy perception, as axes and positioning of data points are clear. Interaction
techniques are not required, but can support the user with brushing, for example. However, scatter
plots can only display two dimensions at any time which imposes a strong limitation on the design
of experiments and data analysis.

It takes effort and time to perceive scatter plot matrices, as there are many scatter plots to analyze.
In addition to that, the axes and correlations need to be closely examined. Interaction techniques
are not necessarily required, but suggested, as the amount of data displayed can be overwhelming
and not answer specific questions. The scatter plot matrix scales quadratically with the number of
displayed dimensions, which is a strong limitation when displaying more dimensions.

Parallel Coordinates have a complex perception, as the correlations between the different dimensions
are more difficult to interpret. The ordering of the columns also greatly influences the perception.
Interaction techniques are recommended for parallel coordinate plots, as reordering of the columns or
brushing a subset of the data can reveal important information. Despite that, the parallel coordinate
plot scales linearly with the number of displayed dimensions.

All in all, each visualization technique has its strengths and drawbacks which have to be considered
when choosing the technique to use. It is also possible to combine the techniques by starting with
techniques that are easily perceivable and changing to enhanced techniques when detailed analyses
are required.

5 Conclusions and Future Directions

In general, it is difficult to deal with high dimensional data as the human brain cannot perceive
more than three dimensions. However, real world data often is high dimensional and analysis of
the data is required. Research has since developed various methods to reduce the dimensions and
visualize the data. While visualization is only one application of dimension reduction techniques,
there are several other areas where an initial dimension reduction step greatly simplifies the task at
hand.

While a lot of techniques have proven to be useful for visualization purposes it is still difficult to
choose the right method and the right parameters for the method. While there are quality metrics
for high dimensional data visualization, most metrics are not centered on the user, but rather on
the technical side. However, the user is the most important factor in reducing and visualizing high
dimensional data, as he needs to understand and analyze the result. Thus, future research should
focus on simplifying the visualization of high dimensional data for users.
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