
Institute of Software Technology
Reliable Software Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit Nr. 107

Introducing Performance
Awareness in an Integrated
Specification Environment

Fabian Keller

Course of Study: Softwaretechnik

Examiner: Dr. André van Hoorn (Prof.-Vertr.)

Supervisor: Dr. André van Hoorn (Prof.-Vertr.),
Dr. Markus Völter (itemis AG, Stuttgart),
Dr. Klaus Birken (itemis AG, Stuttgart)

Commenced: May 17, 2016

Completed: November 30, 2016

CR-Classification: D.2.6, C.4





Abstract

With an increase in software complexity and modularization to create large software
systems and software product lines it is increasingly difficult to ensure all requirements
are met by the built system. Performance requirements are an important concern to
software systems and research has developed approaches being capable of predicting
software performance from annotated software architecture descriptions, such as the
Palladio tool suite. However, the tooling when moving between specification, implemen-
tation and verification phase has a gap as the tools are commonly not linked, leading to
inconsistencies and ambiguities in the produced artifacts. This thesis introduces perfor-
mance awareness into the Integrated Specification Environment for the Specification
of Technical Software Systems (IETS

3), which is a specification environment aiming to
close the tooling gap between the different lifecycle phases. Performance awareness is
introduced by integrating existing approaches for software performance prediction from
the Palladio tool suite and extending them to cope with variability-aware system models
for software product lines. The thesis includes an experimental evaluation showing
that the developed approach is able to provide performance predictions to users of the
specification environment within 2000 ms for systems of up to 20 components and
within 8000 ms for systems of up to 30 components.

III





Kurzfassung

Mit zunehmender Software-Komplexität und Modularisierung zur Entwicklung großer
Softwaresysteme und Software-Produktlinien ist es zunehmend schwierig, alle An-
forderungen des eingebauten Systems zu erfüllen. Performanz ist eine wichtige An-
forderung für Software-Systeme und aktuelle Forschungsarbeiten haben Ansätze entwick-
elt, die in der Lage sind, Software-Performanz von annotierten Software-Architekturen
vorherzusagen, wie beispielswiese die Palladio Tool Suite. Jedoch hat beim Wechseln
zwischen Spezifikations-, Implementierungs- und Verifikationsphase die bestehende
Toolchain eine Lücke, da die eingesetzten Werkzeuge häufig nicht miteinander verknüpft
sind. Dies führt zu Inkonsistenzen und Unklarheiten in den erzeugten Artefakten. Diese
Arbeit führt Performanz-Bewusstsein in die Integrated Specification Environment for the
Specification of Technical Software Systems (IETS

3) ein - eine Spezifikationsumgebung,
die die Werkzeuglücke zwischen den verschiedenen Phasen des Software-Lebenszyklus
zu schließen versucht. Das Bewusstsein wird durch die Integration bestehender Ansätze
zur Performanz-Vorhersage aus der Palladio Tool Suite hergestellt und um die Analyse
von Produktlinien erweitert. Die experimentelle Evaluierung der Arbeit zeigt, dass der
entwickelte Ansatz in der Lage ist, innerhalb von 2000 ms Systeme bestehend aus bis
zu 20 Komponenten, und innerhalb von 8000 ms Systeme bestehend aus bis zu 30
Komponenten, zu analysieren.

V





Acknowledgment

I would like to express my most humble and sincere gratitude to...

... The supervisor of this thesis, Dr. André van Hoorn for the freedom to work on my
own ideas and guidance whenever I felt the need for helpful discussions. His guidance
in the numerous discussions and conversations helped me a lot for the realization and
implementation of innovative ideas and to write this thesis.

... My advisor Dr. Markus Völter for his continuous support of my thesis. He has helped
me shape the vision for this thesis and introduced me to the project this thesis is built
on. His efforts in teaching me how to engineer domain-specific languages have had a
profound impact on the realization of this thesis.

... My advisor Dr. Klaus Birken for the helpful discussions and guidance on the imple-
mentation of this thesis. He always had an open ear to discuss the ideas I had and
decisions I made to implement the approach building on the existing project.

... All colleagues at itemis AG who have helped me with constructive discussions and by
resolving technical difficulties. I would like to especially thank Bernd Kolb, Tamás
Szabó, and Alexander Rimer for spending countless hours debugging classpath
problems and other technical issues.

... My friends Sabrina Kleiser, Sebastian Hesse, Tim Theil and Valentin Zickner for
proofreading this thesis and for the valuable comments and remarks.

... The members of the Palladio community, Dr. Anne Koziolek and Prof. Dr. Steffen
Becker, for their help with understanding and using the Palladio tool suite.

VII





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Main Goal of the Thesis and Research Questions . . . . . . . . . . . . . . 2
1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Foundations and Research Context 5
2.1 Component-based Software Engineering . . . . . . . . . . . . . . . . . . 5
2.2 Software Performance Prediction . . . . . . . . . . . . . . . . . . . . . . 8
2.3 JetBrains MPS and the IETS

3 Project . . . . . . . . . . . . . . . . . . . . 15
2.4 Software Product Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Declarative Performance Engineering . . . . . . . . . . . . . . . . . . . . 21
2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Performance Analysis Abstraction 25
3.1 Performance Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Performance Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Variability-aware Performance Analyzers . . . . . . . . . . . . . . . . . . 30

4 Introducing Performance Awareness in IETS
3 33

4.1 Regular Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Variability-aware Performance Analysis . . . . . . . . . . . . . . . . . . . 35
4.3 Tooling Infrastructure and Integration . . . . . . . . . . . . . . . . . . . 36
4.4 Performance Awareness in IETS

3 . . . . . . . . . . . . . . . . . . . . . . . 38

5 Model-to-Model Transformation 47
5.1 Transformation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Basic Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Supporting SimTriggers . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

IX



6 Quantitative Evaluation 61
6.1 Linear Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Simianviz Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusions and Future Work 67
7.1 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 73

X



List of Figures

2.1 Component-based software development process . . . . . . . . . . . . . 7
2.2 PCM repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 PCM resource demanding service effect specification . . . . . . . . . . . 10
2.4 PCM resource demanding service effect specification example . . . . . . 11
2.5 PCM system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 PCM resource environment . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 PCM allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 PCM usage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 JetBrains Meta Programming System . . . . . . . . . . . . . . . . . . . . 17
2.10 Feature model example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 fastpan performance analyzer interfaces . . . . . . . . . . . . . . . . . . 26
3.2 fastpan Palladio LQN analyzer . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Performance metrics based on activity phases . . . . . . . . . . . . . . . 29
3.4 fastpan variability-aware performance analyzer interfaces . . . . . . . . 31

4.1 Conceptual overview of the performance analysis . . . . . . . . . . . . . 34
4.2 Conceptual overview of the variability-aware performance analysis . . . 35
4.3 Overview of the projects developed . . . . . . . . . . . . . . . . . . . . . 37
4.4 Example IETS

3 component with feature-specific resource demands . . . . 39
4.5 Example IETS

3 scenario and use case definition with requirements . . . . 39
4.6 IETS

3 performance analysis configuration . . . . . . . . . . . . . . . . . . 41
4.7 IETS

3 performance result visualization . . . . . . . . . . . . . . . . . . . 42
4.8 Requirements status visualization of the performance analysis . . . . . . 42
4.9 Requirements fulfillment overview for system configurations . . . . . . . 43
4.10 Result focus on single node in overview for system configurations . . . . 44

5.1 Steps of the IETS
3 to PCM model-to-model transformation . . . . . . . . 48

5.2 IETS
3 to PCM: Repository mapping . . . . . . . . . . . . . . . . . . . . . 50

5.3 IETS
3 to PCM: Resource environment mapping . . . . . . . . . . . . . . . 51

XI



5.4 IETS
3 to PCM: RDSEFF mapping . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Example IETS
3 resource demand . . . . . . . . . . . . . . . . . . . . . . 54

5.6 IETS
3 to PCM: System mapping . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 IETS
3 to PCM: Allocation mapping . . . . . . . . . . . . . . . . . . . . . 56

5.8 IETS
3 to PCM: Usage mapping . . . . . . . . . . . . . . . . . . . . . . . . 57

5.9 Example IETS
3 SimTrigger usage . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Execution times of the linear evaluation model . . . . . . . . . . . . . . 63
6.2 Execution times of the Simianviz evaluation models . . . . . . . . . . . . 65

XII



List of Acronyms

API Application programming interface
CBSE Component-based software engineering
DSL Domain-specific language
EMF Eclipse modeling framework
IDE Integrated development environment
IETS

3 Integrated Specification Environment for the Specification of
Technical Software Systems

LQN Layered queueing network
MPS JetBrains Meta Programming System
OCL Object constraint language
PCM Palladio component model
QoS Quality of service
RDSEFF Resource demanding service effect specification
SPL Software product line
UML Unified modeling language

XIII





Chapter 1

Introduction

1.1 Motivation

Software systems are steadily growing in size and are having increasingly complex
interdependencies. Many software systems are built as software product lines where
a specific software system is derived by configuring the features of the product line.
Additionally, there is an increasing demand for reducing the time-to-market of software
projects while improving the overall quality.

Tools have been built to help users tackle the complexity and maintain a high quality
in the different lifecycle phases of the software development process. The lifecycle
phases roughly boil down to: writing a correct and unambiguous specification, imple-
menting the specification and finally, verifying whether the built software meets the
specification. While the performance of a yet to be developed system is hard to assess, it
inevitably is an important non-functional requirement to many applications that is often
underspecified.

Software performance research has developed approaches to predict the performance
before the systems are actually built (Koziolek, 2010). The predictions are based on the
component architecture enriched with performance-specific annotations such as resource
consumption and typical use cases (Becker et al., 2009). However, the existing tools
for performance analyses are not integrated with other tools of the software lifecycle,
thus, making it difficult to trace the fulfillment of requirements through the used tools.
Moreover, as the tools are not linked inconsistencies and ambiguities may arise that stay
unnoticed and lead to unforeseen breakdowns of the system in production.

Designing systems with performance in mind saves costs in the long run, as architectural
changes are often expensive to carry out in an existing system. To be able to properly
cope with software performance, recent research efforts focus on raising performance

1



1 Introduction

awareness, which captures the (real-time) availability of performance information in
system development environments to inform and assist developers (Tůma, 2014). Exist-
ing approaches (e.g., (Horký et al., 2015)) neglect the system specification, particularly
the specification phase and do not support software product lines (SPLs).

1.2 Main Goal of the Thesis and Research Questions

The main goal of this thesis is to introduce performance awareness support into IETS
3,

an “Integrated Specification Environment for the Specification of Technical Software-
systems”. IETS

3 provides a specification environment addressing the tooling gap between
the software development lifecycle phases introducing various languages to express
requirements, software product lines and component-based software systems. Based on
the main goal, this thesis answers the following research questions:

Research Question 1: How can various model-based performance prediction ap-
proaches be abstracted to a uniform interface to leverage different analysis result
characteristics?

To answer the research question, a framework to integrate different performance predic-
tion approaches with a uniform analysis and results interface will be developed during
this thesis. The framework should be capable of integrating performance predictions
provided by the Palladio (Becker et al., 2009) tooling environment for model-based
performance prediction as well as the existing Simbench performance analysis contained
in IETS

3 (Birken et al., 2010). With such a framework in place, users are able to either
choose an approach that yields fast results or leverage an approach that offers more
precise and detailed results.

Research Question 2: How can model-based performance predictions be inte-
grated in the IETS

3 specification environment to provide feedback to an architect
while designing the software system?

To answer the research question, the performance analysis approaches are integrated
into the IETS

3 platform, providing a user interface to assess the software performance
of the designed system in real-time. To raise performance awareness, the performance
analysis results should be integrated into the existing languages in IETS

3 by adding
performance-related annotations.

Research Question 3: How can model-based performance predictions be used to
provide feedback to an architect while designing software product lines?

As IETS
3 is capable of expressing software product lines, a further goal of this thesis is

to leverage the performance analyses approaches to analyze variability-aware software

2



1.3 Summary of Contributions

systems. The variability analysis results should again be visualized at appropriate
locations of the existing languages and allow the user to interact with the results to
answer relevant questions.

Research Question 4: Is the approach capable of providing real-time performance
awareness?

As the approach is integrated into an IDE-like editor for software specifications, the
performance approaches execution time needs to be acceptably low. Ideally, the approach
should be able to provide a performance prediction result from triggering the analysis to
rendering the result in the user interface within ten seconds.

1.3 Summary of Contributions

The main contributions of this thesis are:

1. Performance analysis abstraction: An open-source framework for model-
agnostic software performance analysis that fosters the integration of various
performance analysis approaches and provides a common interface for defining
performance analysis results.

2. Performance awareness: The approach developed in this thesis introduces per-
formance awareness into the Integrated Specification Environment for the Specifi-
cation of Technical Software Systems (IETS

3) by providing real-time performance
analyses to the users of the system. Hence, the users have the ability to au-
tomatically evaluate whether the designed system will meet the performance
requirements from within the specification environment.

3. Variability-aware performance analysis: Research on performance analyses for
variability-aware systems is in an early stage. The approach developed in this
thesis adds the ability to define performance analyses for variability-aware systems
to the IETS

3 environment and defines user interaction concepts to help architects
meet all performance requirements for a software product line.

3



1 Introduction

1.4 Outline

This thesis is organized as follows:

Chapter 2 introduces the foundations and sets the context for this thesis. Chapter 2.1 in-
troduces component-based software engineering which is required by the software
performance prediction approaches in Chapter 2.2. Chapter 2.3 describes the IETS

3

project, in which the presented performance prediction approach is integrated
in the scope of this thesis. The vision for software performance engineering is
presented in Chapter 2.5 and Chapter 2.6 surveys existing literature related to the
approach developed in this thesis.

Chapter 3 describes the performance analysis framework developed during this thesis
to integrate different performance analysis approaches. Chapter 3.1 explains the
abstraction to conduct a single performance analysis for a system. The structure
of the performance results are detailed in Chapter 3.2. Chapter 3.3 extends the
analysis abstraction with the ability to conduct performance analyses for variability-
aware system models.

Chapter 4 is concerned with the integration of the performance prediction in the IETS
3

environment. Chapter 4.1 gives an overview of the performance analysis for a
single system and Chapter 4.2 for a variability-aware system. Chapter 4.3 describes
the tooling infrastructure built to accomplish the integration of the performance
prediction. The user interface and interaction concepts for the developed approach
are then detailed in Chapter 4.4.

Chapter 5 explains the model-to-model transformation implemented to transform the
IETS

3 system model to the Palladio component model for software performance
prediction. An overview and architectural design decisions are discussed in Chap-
ter 5.1. Chapter 5.2 provides the details of the implemented baseline model-to-
model transformation, before Chapter 5.3 focuses on the support of an enhanced
concept of the IETS

3 model during the transformation.

Chapter 6 evaluates the performance of the presented approach as the approach aims
to provide immediate feedback in an interactive specification environment. Chap-
ter 6.1 analyzes the performance of the approach by scaling the number of compo-
nents in the system, while Chapter 6.2 analyzes the performance of the approach
using real-world software architectures.

Chapter 7 concludes the thesis by summarizing and discussing the contributions of
the thesis and the approach taken. The chapter expounds the limitations of the
approach and highlights future work.

4



Chapter 2

Foundations and Research Context

Software performance is a non-functional requirement and an important concern to all
software systems being built. Without adequate performance a software system is likely
to be rejected by its users for the task it should perform. Yet, software performance
is often neglected when specifying software systems, causing issues after efforts have
been spent to actually build the software. While it is not important (and in general
not reasonable) to precisely define all performance requirements upfront it is still very
important to continuously keep the expected software performance in mind (Ho et al.,
2006).

This chapter provides the foundations and research context of this thesis. Section 2.1
introduces component-based software engineering as paradigm, as the used software
performance evaluation methods leverage component-based software systems. Sec-
tion 2.2 explains the Palladio component model (PCM), which is used to evaluate the
performance of component-based systems. One such evaluation method is the layered
queuing network analysis.

Section 2.3 introduces the MPS language engineering platform on which IETS
3 is built

on and as well as the IETS
3 project itself. In addition to that, the existing performance

evaluation approach called Simbench is described. As IETS
3 supports the modeling of

software product lines Section 2.4 introduces basic notations and formalisms related
to variability. Section 2.5 details the status quo and vision of declarative performance
engineering before Section 2.6 relates the work to the state of the art research.

2.1 Component-based Software Engineering

Component-based software engineering (CBSE) is a discipline centered around engi-
neering software systems by composing individual, reusable software components. In

5



2 Foundations and Research Context

addition to a high reuseability of components, an additional advantage of CBSE is
the ability to design for changeability. With fast-paced changes to requirements and
market demands the ability to change software quickly is an important competitive
advantage (Fricke et al., 2005). Software components naturally allow to compose
systems with changed behaviors by using different or updated components, or even by
connecting components differently to alter their composed behavior.

2.1.1 Software Components

The use of the term component or software component in this thesis adheres to the
definition by Taylor et al. (2009): “A software component is an architectural entity
that (1) encapsulates a subset of the system’s functionality and/or data, (2) restricts
access to that subset via an explicitly defined interface, and (3) has explicitly defined
dependencies on its required execution context”. Hence, a key concept of software
components are interfaces the component provides or requires. While a component
can only be accessed through an interface it provides, the component itself may only
access other components through interfaces it requires. With the stringent separation
between the component specification comprising its interfaces and a specific component
realization implementing the interfaces, two software component realizations can be
exchanged as long as they provide the same interface.

Component realizations are free to choose the platform, programming language or
programming paradigm they are built with, as long as they comply with their interfaces.
Generally, component realizations are treated as black-box as clients should not know
the inner workings of a component to not rely on implementation-specific behavior.
However, to analyze the performance behavior it is inevitable to know the inner workings
of the component to some degree, as the resource usage of a component is often highly
dependent on the arguments the component is called with. Hence, the approach in
this thesis requires at least a grey-box view of the component which reveals only parts
of the implementation, or a glass-box view which provides a read-only view of the
realization (Koziolek, 2008).

2.1.2 Component-based Software Development Process

Building a software system based on components differs from classical software engi-
neering development processes. Taylor et al. (2009) define the development as: “A
component-based software development is the development based on the existence of a
significant number of reusable components. The system development process focuses on
integrating these components into a system rather than developing them from scratch”.

6



2.1 Component-based Software Engineering

Requirements Specification QoS Analysis

Deployment Test Assembly

Provisioning

Figure 2.1: Simplified view of the component-based development process starting with
the requirements phase. Originally defined by Cheesman et al. (2001) and
augmented to include the QoS Analysis by Koziolek et al. (2006). The
double-sided arrow indicates a change of activity in either direction.

The resulting system architecture emphasizes the component interactions as well as
decisions to use or reuse a component.

Figure 2.1 shows the activities of the component-based development process as described
by Cheesman et al. (2001) neglecting the flow of artifacts between the activities. The
workflow is used by the Palladio tool suite (Koziolek, 2008) which powers the approach
presented in this thesis. The workflow also applies to the IETS

3 modeling environment
and is thus important to this approach.

The Requirements activity elicits and documents the business requirements and use
cases with the help of a domain expert. Based on the requirements, the component-
based software architecture is designed in the Specification activity by a system architect.
System architects may work with component developers to model new and reuse existing
component specifications for the system architecture. Koziolek et al. (2006) added the
QoS Analysis activity to explicitly account for the quality of service (QoS) analysis of the
system architecture. The QoS analyst uses business requirements to enrich the system
architecture with QoS-related measures and verifies whether the QoS requirements are
fulfilled for a certain system deployment. The results of the analysis may in turn influence
the system architecture as well as the deployment. The Provisioning activity comprises
the “make-or-buy” decisions that need to be made for each individual component. During
the Assembly activity the components are technically connected, which may involve
configuring components, writing or bridging differing interfaces or integrating legacy
components. The assembled application can then be tested in the Test activity, before
being deployed in the Deployment activity.

7



2 Foundations and Research Context

2.2 Software Performance Prediction

One aspect of the QoS analysis activity in the component-based development process
introduced in Section 2.1 is software performance. When designing the system architec-
ture from the individual components it becomes increasingly important to determine
whether the proposed architecture fulfills all requirements, ideally before any efforts are
spent building the system. Research has developed methods to reason about the soft-
ware performance of a system by specifying the performance behavior of its individual
components and analyzing their interaction (Reussner et al., 2003).

Performance prediction leverages architectural models of a software system to predict
its performance. Typically, the software system is in its design phase when performance
prediction is useful. As performance prediction works on models of the system to be built,
there is a risk that the predicted performance is not identical to the performance of the
implemented system. To minimize the risk, experts build prototypes, proof-of-concepts,
measure existing systems (e.g., by extracting typical workloads (van Hoorn et al., 2014))
and then integrate a number of refined assumptions into the models used for prediction.
To predict the performance of a software system the following models are typically
required (Becker et al., 2009):

• Component Specifications: Describes available components, their required and
provided interfaces including supported operations as well as their expected
performance demands.

• Assembly Model: The assembly model specifies component interactions and
their connections to form the whole system. The assembly model specifies which
component instances of a certain component are available to build the system.

• Allocation Model: The allocation model allocates the assembled components
onto specific (hardware) resources that are capable of satisfying the performance
demands of the components. The performance specification of the resources is
also part of the allocation model.

• Usage Model: The usage model contains typical use-cases of the system for which
the performance is relevant. The usage model is a reflection of the business QoS
requirements and provides the entry point for the performance analysis.

Becker et al. (2009) introduce the Palladio component model (PCM) which is capable
of modeling all of the above models. In the meantime, various analysis approaches for
the PCM have been developed, including analytical analyses transforming the PCM to
stochastic regular expressions or a queuing network model to predict the performance
of the model.

8



2.2 Software Performance Prediction

The performance analyses used in this thesis are built on the Palladio component model,
which is introduced in Section 2.2.1. The analytical PCM performance analysis leveraging
layered queueing networks (LQNs) is then described in Section 2.2.2.

2.2.1 Palladio Component Model

Palladio (Becker et al., 2009) is a domain-specific language and corresponding tooling
infrastructure for performance prediction of component-based software systems. The
Palladio component model (PCM) is the modeling language used to model a system with
its component specifications, assemblies, allocations and usage models. This section
presents the different aspects contained in a PCM instance.

Repository

The PCM repository (Figure 2.2) stores component specifications (referred to as
RepositoryComponent), interface specifications (referred to as Interface) and
available data types (referred to as DataType). The component specification models
which interfaces the component requires and which interfaces are provided by the com-
ponent. For the sake of simplicity, the classes involved in establishing the provided and
required interfaces of a component are not shown in the class diagram in Figure 2.2.

BasicComponent

RepositoryComponent

Repository

Interface

* *

DataType

*

OperationInterface

OperationSignature

*

Figure 2.2: Important aspects of the PCM repository meta-model.

The approach developed in this thesis will only make use of the BasicComponent
component type, which represents a simple component. Palladio features enhanced
components such as composite components or subsystems, which are not relevant for
the presented approach. The OperationInterface is an interface type representing
a regular component interface owning a set of OperationSignature signatures

9



2 Foundations and Research Context

that can be called. An operation signature may specify parameters and return types
referencing the available data types of the repository.

Resource demanding service effect specification

Resource demanding service effect specifications (RDSEFFs) (Figure 2.3) are used
to model the performance behavior of a component and are part of the repository
model. A central part of the RDSEFF model is the ResourceDemandingBehavior
that comprises a number of steps that define the resource demands.

BasicComponent

ResourceDemandingSEFF

serviceEffectSpecifications *

AbstractAction ResourceDemandingBehaviour
steps

*

OperationSignature

ExternalCallAction InternalAction StartAction StopAction

AbstractResourceDemandingAction ParametricResourceDemand
resourceDemand

*

AbstractLoopAction BranchAction

describedService

Figure 2.3: Important aspects of the Palladio resource demanding service effect specifi-
cation meta-model.

The PCM ships with different steps extending AbstractAction to express resource
demands. While PCM defines even more actions, the following are relevant for the
approach developed in this thesis:

• StartAction and StopAction: The PCM requires them to be the first and last
element, respectively, of the doubly-linked list of steps contained within a
ResourceDemandingBehaviour.

• InternalAction: Models a resource demand affecting a specific resource specifica-
tion (e.g., a CPU or HDD) of a resource container.

• AbstractLoopAction: Contains a nested ResourceDemandingBehaviour that
is repeated as long as the loop condition holds.

• BranchAction: Allows to define conditional resource demands. Each conditional
branch contains a nested ResourceDemandingBehaviour.

• ExternalCallAction: Calls an operation of another component through a required
interface of the calling component.

10



2.2 Software Performance Prediction

Figure 2.4: Example RDSEFF of an operation, first modeling a CPU demand of 4 units,
then calling another component with signature parameter specifications
before modeling a conditional resource demand depending on the value of
a parameter of the called operation.

Figure 2.4 shows an example RDSEFF as visualized in the Palladio Bench tool. A black
dot represents a StartAction and a black dot with surrounding circle denotes a
StopAction. The arrows indicate the order of the steps in the RDSEFF. First, an
InternalAction defines a CPU demand of 4. Then, an operation of another compo-
nent is called with the ExternalCallAction, where a parameter of the called opera-
tion is characterized to be a certain value. Last, the behavior defines a BranchAction
with two branches. Each branch defines a condition and if the condition is fulfilled, the
nested RDSEFF is executed.

System

The system model assembles the components to a system by connecting them. In addi-
tion to that, the system model is capable of defining required and provided interfaces
of the system itself. Figure 2.5 shows the PCM system model. A central concept of the
system model is the AssemblyContext, which encapsulates any component of the
repository and allows it to be connected to other components. Hence, multiple assembly
contexts of the same component definition may coexist and can be connected differ-
ently. To connect two assembly contexts, an AssemblyConnector is used to define
a unidirectional connection between the two encapsulated components. Hence, the
ExternalCall actions defined in the RDSEFFs of a component requiring a service will
use the component connected in the target assembly context. The system may also pro-
vide or require certain operations by defining the respective *DelegationConnector.
The delegation connector refers to a specific provided or required role of a component
in a assembly context.

11



2 Foundations and Research Context

System

AssemblyContext

encapsulatedComponent: RepositoryComponent

assemblyContexts

*

RequiredDelegationConnector

assemblyContext: AssemblyContext
innerRequiredRole: OperationRequiredRole
outerRequiredRole: OperationRequiredRole

ProvidedDelegationConnector

assemblyContext: AssemblyContext
innerProvidedRole: OperationProvidedRole
outerProvidedRole: OperationProvidedRole

Connector
connectors

*

AssemblyConncetor

requiringAssemblyContext: AssemblyContext
providingAssemblyContext: AssemblyContext
requiredRole: OperationRequiredRole
providedRole: OperationProvidedRole

Figure 2.5: The PCM system model defines component connections.

Resource Environment

The resource environment defines the hardware the modeled system is allocated on.
As shown in Figure 2.6, the resource environment consists of two concepts: resources
denoted as ResourceContainer and communication links between the resources
modeled as LinkingResource. A linking resource may connect an arbitrary number
of resource containers and any resource demands affecting the communication of services
running on connected containers are affected by the communication specification.

ResourceEnvironment

LinkingResourceResourceContainer

resourceContainer * linkingResources*

connectedResourceContainers

*

CommunicationLinkResourceSpecification

communicationLinkResourceType = LAN
latency: PCMRandomVariable
throughput: PCMRandomVariable

ProcessingResourceSpecification

activeResourceType: ProcessingResourceType
processingRate: PCMRandomVariable
numberOfReplicas: int
schedulingPolicy: SchedulingPolicy

activeResourceSpecifications*

Figure 2.6: The PCM resource environment defines the available hardware the system
is deployed on.

Both, resource containers and linking resources are parameterized by specifications
attached to them. A ResourceContainer has a certain resource type, which in the
scope of this thesis is either set to CPU representing a processor or HDD representing
a data storage medium. The processing rate of the resource container specifies the
processing speed of the CPU or the HDD and is set to a PCM random variable. The
number of replicas models the number of cores the CPU has. Last but not least, the
scheduling policy models in which order incoming requests are served. The available

12



2.2 Software Performance Prediction

default scheduling policies are first-come-first-serve, delay and processor sharing. A
LinkingResourcemay be parameterized by specifying the latency and the throughput,
which are both PCM random variables.

Allocation

The purpose of the allocation model is to allocate the assembly contexts to actual
processing resources of the resource environment. The AllocationContext as
shown in Figure 2.7 establishes the mapping between a AssemblyContext and a
ResourceContainer to which the context is deployed to. Each assembly context may
only be deployed to a single resource container. The allocation model merely is a list of
allocation contexts.

Allocation AllocationContext
allocationContexts

*

AssemblyContext

assemblyContext

ResourceContainer

resourceContainer

Figure 2.7: The PCM allocation maps the systems components to the processing capa-
bilities defined in the resource environment.

Usage Model

The PCM usage model is used to specify an application workload scenario to be analyzed.
Figure 2.8 shows the meta model of the usage model. Each scenario of the usage model
has an associated workload and a behavior. The workload is either open or closed and
can be parameterized accordingly. The scenario behavior is defined by an ordered list
of steps, similar to the RDSEFF specification. The behavior steps have to start and end
with the Start and Stop actions, respectively. The control flow of the scenario can
be altered by defining a Branch action for conditional behavior or a Loop action for
repeated behavior. The Delay action simply delays the execution of the next step by
the specified amount of time and can for example be used to model think time between
subsequent user requests.

To actually call the system, the EntryLevelSystemCall is used. The system call
targets an operation provided by the system and is capable of modeling parameter

13



2 Foundations and Research Context

UsageModel UsageScenario
usageScenario

*
ScenarioBehaviour

scenarioBehaviour

Workload
workload

ClosedWorkload

population: int
thinkTime: PCMRandomVariable

OpenWorkload

interArrivalTime: PCMRandomVariable

AbstractUserAction

steps *

EntryLevelSystemCallStart Stop LoopBranch Delay

VariableUsage

*
VariableCharacterisation

type: VariableCharacterisationType
specification: PCMRandomVariable

*

Figure 2.8: The PCM usage model defines a use case scenario for the application usage.

usages. If the called operation has parameters, the parameter can be parameterized by
adding a VariableUsage declaration for the parameter. The VariableUsage then
has a set of VariableCharacterisations containing the actual parametrization,
which allow to precisely model performance-relevant parameter meta data. For example,
an operation sorting an array expects an array as input, but the array contents itself
do not impact the performance a lot. Instead, the characterization can specify the
NUMBER_OF_ELEMENTS the array has, as that is the performance-relevant metadata
for the sorting operation. Analogous to that, to model the performance of an operation
writing data to a file the number of bytes written are relevant to the performance and
as such, the characterization may specify the BYTESIZE as parameter meta data. With
the variable usage and characterization concepts the usage model can precisely model
performance-relevant behavior of the system.

2.2.2 Layered Queuing Network Analysis

Layered queueing networks (LQNs) are used to predict the performance of distributed
software systems (Franks et al., 2009). Layered queueing networks extend the modeling
capabilities of regular queuing networks by a hierarchical organization of queues. The
hierarchical organization is important, as a server calling a second server remains in
a blocked state until the call returns, which is what the LQN is capable of modeling.
The concept of layered queueing networks has been extended by features important
to real application systems and various solvers have been developed to cope with
these additional features (e.g., Fontenot (1989), Menascé (2002), and Petriu et al.
(1991)). The feature extensions include, but are not limited to, multithreaded servers,
asynchronous messaging, issuing requests to all servers of lower layers, or modeling
CPU demands of any variance.

14



2.3 JetBrains MPS and the IETS
3 Project

Koziolek (2008) developed a transformation from the Palladio component model to
a corresponding layered queueing network. The transformation resolves parameter
dependencies of the Palladio components and turns the architectural concepts of the
component model to an equivalent representation in the LQN modeling language. The
Palladio tool suite uses the LQN solver developed by Franks et al. (2005) to solve the
transformed models. While the LQN solver is only able to conduct a mean-value analysis,
the analysis execution time is substantially lower compared to a simulated performance
analysis of a PCM (Becker, 2008). Thus, the LQN approach perfectly fits the goal of this
thesis to raise performance awareness by providing immediate analysis feedback to the
user.

2.3 JetBrains MPS and the IETS
3 Project

The presented approach is integrated into IETS
3, an Integrated Specification Environment

for the Specification of Technical Software Systems. IETS
3 is built on top of the JetBrains

Meta Programming System (MPS) (Jetbrains MPS), which is an open-source language
workbench (Erdweg et al., 2013), i.e., a system for defining, composing and using
languages and their IDEs. A discrete event simulation performance analysis tool called
Simbench has already been integrated into IETS

3 and is integrated with the approach
developed in this thesis.

2.3.1 JetBrains MPS

The JetBrains Meta Programming System (MPS) supports concrete and abstract syntax,
type systems, transformations, as well as IDE aspects, such as syntax highlighting, code
completion, find-usages, diff/merge, refactoring, and debugging. MPS uses a projectional
editor, which means that a user’s edit actions directly change the underlying abstract
syntax tree of a program, which then is just projected to resemble the natural look and
feel of a text-like editor. Hence, the approach does not require a parser to create the
abstract syntax tree and thus the language is not limited by the constraints parsers impose
on language design. Consequently, MPS supports a wide variety of notations (Voelter
et al., 2014) as well as essentially unlimited language composition (Voelter, 2011).
MPS is used widely in industry for languages in a wide variety of domains, including
embedded software, insurance, health and medicine, as well as aerospace. MPS offers
the following concepts to customize a domain-specific language:

15



2 Foundations and Research Context

• Structure: The structure defines the abstract syntax of the DSL. The abstract syntax
comprises concept definitions, which feature inheritance, properties, children, and
references to other concepts.

• Editor: Editors form the concrete syntax of a DSL that the user sees on the screen
and interacts with. As the contents are projected in MPS a concept may have
multiple editors (e.g., a textual notation and a graphical notation).

• Constraints: Constraints restrict the use of concepts to certain locations in the
abstract syntax tree, e.g., a “can be child” constraint may limit the use of a certain
concept only within a certain parent concept.

• Typesystem: Concepts have a defined type that is derived by typesystem rules.
The typesystem allows to define complex validation scenarios to force a proper
usage of the DSL.

Next to the DSL definition, MPS also defines some common techniques for the user
interaction with the DSL. A plugin action is able to provide custom entries to the context
menu opened for a specific concept. Similar to a context menu, intentions are also defined
for a specific concept. A keyboard shortcut then shows a list of defined intentions for
the selected concept and the user may choose which intention to execute (i.e., change
visibility of a Java property to public instead of changing the modifier itself).

Figure 2.9 shows a screenshot of the JetBrains Meta Programming System user interface.
The user interface is very similar in terms of the look and feel to a regular IDE. The left
pane shows all models belonging to the project and the right pane shows the currently
opened model. The right pane is the projectional editor, which is why the feature specific
use in the component definition can be rendered as a table.

2.3.2 The IETS
3 Project

IETS
3 is a research project striving to develop an IDE-like tool for writing specifications

of software systems. Traditionally, the specification of software systems is scattered
among various tools having different degrees of formal verifiability. Specifications are
typically written in prose, for example using text editors like Word or Excel, or using
requirements tools such as DOORS. To check these documents for internal consistency
and correctness is nearly impossible due to the prose format not being suited for formal
analysis methods. Additionally, the tools typically cannot reference artifacts in other
tools, making it difficult to maintain consistent documents and to enable traceability.

To tackle the described problem, IETS
3 relies on the JetBrains MPS language workbench

leveraging its facilities for language composition and notational flexibility. IETS
3 strives

16



2.3 JetBrains MPS and the IETS
3 Project

Figure 2.9: A screenshot of the JetBrains Meta Programming System user interface.

to seamlessly integrate informal, semi-formal and formal specification languages using
the features and capabilities of the language workbench. By using a language workbench,
IETS

3 is able to provide automatic checks with visual feedback in case of errors to help
users write correct and coherent specifications. In addition to that, the languages allow
the specification to be automatically transformed to other artifacts, such as generated
code. To improve the user experience, interactions commonly used in IDEs by developers
are added to the specification editor, such as refactorings to help users consistently
change parts of the specification or quick fixes to solve common mistakes.

At the core, the IETS
3 tool suite comes with four languages: expressions, components,

requirements, and feature models to support software product lines (SPLs):

• Expressions: Expressions are a very versatile language construct to allow the
definition of arbitrary, extensible expressions. Any additional language can con-
tribute expressions that integrate seamlessly with existing expressions. A strict
type system and checking rules help keep the expressions valid and form a solid
foundation for using references to specification elements within expressions. For
example, requirements can reference elements of a component definition by using
expressions.

17



2 Foundations and Research Context

• Components: The component language allows to define components and their
connections through specific ports. The components may contain instances of
other components inside a substructure, allowing component hierarchies to be
formed. The component language is used to model architectural specifications
of the system and is extensible to have a solid foundation for component-based
software engineering.

• Requirements: The requirements language allows to write requirements with a
semi-formal language. While the requirements are generally written in prose text
other requirements or term definitions can be referenced from within the natural
language text. Requirements also contain metadata, such as tags, the person in
charge, a priority or references to conflicting requirements.

• Feature model: Feature models are used to describe product lines and provide
graphical editors showing the tree structure of the feature relationships. The
feature model language supports constraints between features, parameters to
parametrize a feature, and references between feature models. A specific vari-
ant can be modeled using a Configuration, which basically stores which fea-
tures are enabled and sets parameters, if necessary. The feature model is tightly
integrated into other languages of the IETS

3 project to model feature-specific
capabilities.

One of the first concrete tools built on top of the IETS
3 core languages is Simbench (Birken

et al., 2010), a tool for discrete performance simulation. Simbench extends and en-
riches the core languages of IETS

3 in many places to provide the performance analysis
capability:

• Component language extension: Simbench extends the component language
to add performance analysis specific language concepts to components. A key
part of the extension is the ability to specify resource demands for the services a
component provides.

• Hardware language: A new language has been added to model hardware ele-
ments such as processors or passive resources (e.g., a hard disk). The components
of the system can then be allocated on the modeled hardware elements and the per-
formance analysis will use the processing speeds and capabilities of the hardware
elements the components are deployed on to analyze the system performance.

• Usage model language: The usage model is able to model typical scenario work
loads the system will encounter. The work loads are then used by the performance
analysis to determine the system performance for the respective scenario. Perfor-
mance requirements can be added to a scenario and are verified with the analysis

18



2.4 Software Product Lines

results. A deep integration with the IETS
3 requirements language is planned at this

point in time, but has not yet been implemented.

• Expression integration: The expression language is used throughout all lan-
guages and extensions Simbench provides. Primarily, the expression language
allows to reference parts of the Simbench model at appropriate places, for exam-
ple a call to a required service from within a resource demand of a component.
Typically, the defined expressions enable a hierarchical access of model elements
(e.g., root.child.grandChild) and are strongly constrained to only allow
semantically valid models.

• Feature model integration: The feature model language is tightly integrated
into Simbench by means of language embedding. Resource demands, hardware
allocations and scenarios may be feature-specific and can be enabled by adding
a feature expression to the model elements. This integration allows to model
performance behavior for software product lines and is an important foundation
for this thesis.

Simbench provides performance-relevant modeling capabilities to the IETS
3 environ-

ment and even implements a performance analysis based on discrete-event simulation.
Hence, the Simbench language and its extensions lay the groundwork for the approach
developed in this thesis.

2.4 Software Product Lines

Software product lines (SPLs) allow software systems to be built by composing features
with defined variability points to a deliverable system (Van Gurp et al., 2001). Product
line software engineering is thus concerned with two aspects: developing the actual
features (i.e., core asset development) and composing those features to craft a product
(i.e., product development) (Northrop et al., 2001). A key ingredient to successfully
applying product line software engineering is a strong feedback loop between those
two activities, as the requirements for the core assets change with new products and in
turn, better core assets allow to build better systems. With the guidance of a marketing-
oriented perspective an organization is able to engineer systems using software product
lines that meet business goals while satisfying the customer needs (Kang et al., 2002).

Tools have been developed to aid organizations in developing software product lines.
Feature models are such a tool, allowing to model all possible variants of a product line
(Lee et al., 2002). Feature models define required and optional features as well as their
interdependencies by imposing constraints between features that must hold for all valid
configurations.

19



2 Foundations and Research Context

Figure 2.10: Example feature model as visualized in the IETS
3 editor.

Figure 2.10 shows an example feature model of a hardware product with a notation
similar to the notation introduced by Kang et al. (1990). The relationships between
the features have different semantics denoted by the respective icon. In general, the
feature model is read top-down and the relationships indicate which child features
can or need to be enabled if the parent feature is enabled. The HardwareVariants
feature has three child features, of which the two with the filled dot are mandatory
(i.e., Processors and MassStorage) while the unfilled dot of the Connectivity
feature denotes an optional feature. Thus, each valid variant has to have a processor and
a mass storage, but may or may not specify the connectivity feature. The unfilled arc
of the MassStorage feature denotes a logical exclusive-or-relationship (XOR). Hence,
if the MassStorage feature is enabled either the Harddisk or the SSD feature must
be enabled, but not both at the same time. The filled arc below the Connectivity
feature denotes a logical or-relationship (OR), where any child feature may be enabled.
Accordingly, any of WLAN, Ethernet or Bluetooth may be enabled or disabled. While
the relationship types allow to express a rudimentary set of interdependencies between
the features, constraints allow to model more sophisticated interdependencies. For
example, the HardwareVariants has a constraint stating that if WLAN is enabled, the
CPU_3Ghz feature must be enabled and the Ethernet feature must be disabled to
form a valid variant.

As features can be composed in a tremendous number of variations, it is challenging to
analyze the performance impact of features in different product variations (Kolesnikov
et al., 2013). Recent efforts in the field of SPL performance prediction leverage sta-
tistical techniques to try to cover the variability space. Zhang et al. (2016) aim to
find performance-relevant feature interactions using Fourier transforms. Guo et al.
(2013) train decision trees with a small, randomly selected set of variants and achieve a
prediction accuracy of the software performance of over 94%. An interesting finding
of the approach is that the built decision tree model is understandable by humans, as
by definition a decision tree model embodies the feature interactions that lead to a
certain performance. Thus, by analyzing the feature model itself engineers are be able
to determine feature interactions that have a high performance impact. Valov (2014)
explore different regression methods and parameters for the decision tree software

20



2.5 Declarative Performance Engineering

performance prediction and found that bagging outperforms CART, random forests and
SVM regression.

IETS
3 provides a feature model and thus allows SPL performance analyses to be con-

ducted on variability-aware models. The notation for feature models as shown in
Figure 2.10 is part of IETS

3 and deeply integrated with the component and performance
modeling languages.

2.5 Declarative Performance Engineering

Declarative performance engineering is a new perspective on software performance
engineering and emphasizes the user trying to reason about the performance of a
system (Walter et al., 2016). Research has developed various tools and techniques to
assess the performance of a software system, during design as well as during operation,
and provides means for performance management (Brunnert et al., 2015). However,
often an expert is needed to configure and parametrize the approach and to interpret
the analysis results. Moreover, choosing the right approach to analyze a specific scenario
is also a challenging task requiring experience of the analyst.

A key vision of declarative performance engineering is to distinguish between the actual
concerns of the user and the task of selecting and parametrizing a performance analysis
approach for the given concern. By expressing the concerns of the user in a (yet to be
developed) declarative language, techniques can be developed to automatically select
and parametrize appropriate methods, techniques or tools based on the user concern. It
is planned that the declarative language supports system element queries to query the
modeled system for its capabilities, user-controlled queries to query the modeled system
for its performance, sensitivity queries to analyze the impact of certain model elements,
temporal queries to analyze the system over a period of time, and goal definitions to
enable users to specify goals the system should or must reach. The language is then
processed and fed into a capability model and decision engine to decide which technique
to use.

While the research in declarative performance engineering is still in its early stages,
the decisions for the approach developed in this thesis are geared towards building
a reusable platform for declarative performance engineering. Special care has been
taken to expose extension points that are capable of integrating declarative performance
engineering tools in the future.

21



2 Foundations and Research Context

2.6 Related Work

This section discusses the related work regarding the core contribution of this thesis:
real-time performance awareness in the software development process. Related work
primarily addresses performance awareness for developers during the implementation
phase of a project.

Horký et al. (2015) use performance unit tests to generate performance documentation
for the developers using the components to make informed decisions. The performance
unit tests are executed with a certain workload and the performance measurement
results are presented to the developer. The envisioned integration of the approach into
the user interface of an IDE has not yet been implemented, as the proposed approach
focuses on workload and parameter selection of the test cases.

Danciu et al. (2015) employ Palladio to predict the response time of Java EE component
operations during their implementation within an IDE. The approach predicts the per-
formance of the implementation by converting it to a parametrized Palladio component
model modeling the implemented control flow structure and all calls to external ser-
vices. The response times of external services under a certain workload are retrieved
by instrumentation of a representative running system. Performance prediction results
are then visualized next to the affected source code, especially highlighting operations
where the predicted performance exceeds a predefined threshold.

Contrary to predicting the performance, Beck et al. (2013) integrate performance profil-
ing results directly into the code. The profiling results are visualized as percentage of
time consumed for a particular line of code. The approach also features user interaction
concepts that all start from the small percentage indicator next to a line of code. Due
to rendering the results near the affected location the approach helps developers keep
focused on their task at hand and not distract them with complicated views or sidebars.
A user study revealed that the compact display is helpful to developers, but that a
traditional complex view is indeed helpful in certain situations.

The approach presented by Johnson et al. (2013) requires the software architecture
to be modeled in UML and allows to define descriptive and predictive expressions
using an extension to the object constraint language (OCL). The approach is capable of
probabilistically analyzing the modeled architecture using an algorithm for probabilistic
inference.

Performance awareness is also concerned with the real-time feedback loop for users
involved in the software development process (Voelter et al., 2013). For real-time
feedback incremental analysis can yield very fast response times (Szabó et al., 2016)
and hence, a great user experience.

22



2.6 Related Work

The approach developed in this thesis introduces performance awareness into the IETS
3

specification environment by transforming the IETS
3 model to a corresponding Palladio

component model. The results of the analysis are lifted back to the IETS
3 model and

are automatically attached to the specified performance requirements, similar to how
Beck et al. (2013) visualize the profiling results. The developed approach provides a
real-time feedback loop and is extensible to other performance analyses.

23





Chapter 3

Performance Analysis Abstraction

Performance analyzers typically analyze a single model and return the results depend-
ing on their tooling infrastructure. To increase performance awareness in the IETS

3

integrated specification environment the aim of this thesis is to be able to use multiple
performance analyzers. A diverse range of performance analyzers in such a setting is of
high value as they exhibit different characteristics: some may execute very fast, some
may yield precise results and others may only be able to analyze a certain part of a
model. Depending on the question the user is trying to answer, different performance
analyzers may be better suited for the job.

To be able to easily execute different analysis approaches a reusable framework for
software performance analysis called fastpan, which has been open-sourced, was devel-
oped (Keller, 2016a). The framework provides a set of interfaces and default implemen-
tations to write a performance analysis for a certain type of model. Most importantly, the
framework provides a means to express performance results through a unified interfaces.
A strictly-typed class hierarchy allows to express various performance measures, which
are attached to parts of the model to form an analysis result.

Section 3.1 describes how a performance analysis approach is integrated into the fastpan
framework. The uniform performance result interface is then presented in Section 3.2.
Finally, Section 3.3 introduces concepts required to build variability-aware performance
analyses.

3.1 Performance Analyzers

Using fastpan, a performance analysis for a specific system (e.g., the Palladio component
model) is defined by implementing the PerformanceAnalyzer interface as shown in
Figure 3.1. A PerformanceAnalyzer has to designate its specific capabilities (e.g., a

25



3 Performance Analysis Abstraction

PerformanceAnalyzer

+capabilities()
+supports(system: SYSTEM): boolean
+setupAnalysis(system: SYSTEM): AnalysisContext<SYSTEM>

SYSTEM
CONTEXT:  AnalysisContext<SYSTEM>

AnalysisContext

+analyze(): PerformanceResult

SYSTEM

PerformanceResult

+getResults(): Result<ELEMENT>[0..*]

ELEMENT

Figure 3.1: Required interfaces to define a performance analysis with the fastpan frame-
work.

fast execution time) and can determine whether a particular instance of the system can
be analyzed. The PerformanceAnalyzer::setupAnalysis method is a factory
method that configures a specific AnalysisContext for the given system. The context
instance is then able to execute the actual performance analysis and yields a performance
result.

Figure 3.2 shows two performance analyzers built on top of the fastpan frame-
work that were developed during this thesis. The PcmLqnsAnalyzer is an
adapter wrapping the analysis provided by Palladio setting up and configuring
the PcmLqnsAnalyzerContext which analyzes a system contained in a Palladio
PcmInstance. To integrate the analyzer into IETS

3, the PalladioLqnsAnalyzer
sets up and configures the PalladioLqnsContext for the IETS

3 model. The context
performs a model-to-model transformation from the IETS

3 model to the PCM model and
reuses the existing PcmLqnsAnalyzer to execute the LQN solver on the transformed
PCM. As the results of the Palladio LQN analysis are wrapped with a fastpan perfor-
mance result, the results are attached to a specific model element and comprise a certain
performance measure. The IETS

3 PalladioLqnsContext keeps track of the tracing
between the IETS

3 model elements and the transformed PCM elements and can thus lift
the performance results to the IETS

3 model elements. The main advantage of using the
fastpan framework in this scenario is that the IETS

3 model can be analyzed with any
other approach capable of analyzing a PCM instance.

The framework has been designed to allow performance analyzers to solely consist of a
model-to-model transformation to provide the input for another performance analyzer.
Transforming to a system model that already has performance analyzers integrated into
the fastpan framework allows these to be reused. When implementing a model-to-model
transformation it is important to trace the transformed model parts to be able to lift

26



3.2 Performance Analysis Results

IETS3 palladio-headless

fastpan

<SYSTEM -> PcmInstance>
«bind»

<SYSTEM -> node<System>>
«bind»

PerformanceAnalyzer

SYSTEM
CONTEXT

AnalysisContext

SYSTEM

PalladioLqnsAnalyzer

PcmLqnsAnalyzerContextPalladioLqnsContext

PcmLqnsAnalyzer

Figure 3.2: The fastpan interfaces used to setup the LQN analysis provided by Palladio
for two different models: the Palladio component model itself and the IETS

3

model, which reuses the PCM analyzer.

the performance analysis results of the underlying performance analyzer to the original
model. As seen in Figure 3.1, PerformanceResults are attached to certain elements
of the model, while the actual performance metric is encapsulated such that the actual
result can easily be remapped to elements of another model. The developed approach in
this thesis as described in Chapter 4 uses this technique to transform the IETS

3 model to
the Palladio component model and lift the analysis results back to the IETS

3 model.

3.2 Performance Analysis Results

Performance measure definitions vary among literature and are used ambiguously. To
be able to compare the results of different performance analyses, all relevant software
performance measures are defined in this section and are based on Jain (1990). The
following notations are required to formulate the measures:

• Resource Ri: Metrics can be related to a specific resource (e.g., a CPU), which is
denoted as Ri ∈ R, i ∈ N being the i-th resource of the system.

27



3 Performance Analysis Abstraction

• Set of Resources RS: Metrics may be defined for a set of resources, which is
denoted as RS ⊆ R.

• Observation time T : The total observation time in a specific unit of time.

The names of the presented metrics are directly related to the PerformanceMeasure
classes in the fastpan framework, which represent the semantic meaning as defined in
this section.

3.2.1 General Time-based Performance Metrics

BusyTime Bi: The amount of time a processing resource Ri is busy, i.e., being used.

IdleTime Ii: The amount of time a processing resource Ri is idle, i.e., not being used.

By definition, the total observation time is the sum of the busy and idle time of a
resource: T = Ri + Ii

Utilization: The proportion of a time span T that a single resource Ri is being busy B

(i.e., being used).

Utilization(Ri) = B

T
(3.1)

By definition, 0 ≤ Utilization(Ri) ≤ 1 always holds, as the utilization is defined for
a single resource. To cover the utilization of multiple resource, the following term is
defined:

MultiUtilization: The proportion of the observed time span T that a certain number of
resources RS are busy (i.e., being used).

MultiUtilization(RS) =
∑

i Bi

T
, ∀i ∈ N : Ri ∈ RS (3.2)

3.2.2 Service-based Performance Metrics

Service-based performance metrics provide a top-level view on the performance of
a system by specifying metrics for measureable quantities outside the actual system,
e.g., the response time of a web server. Figure 3.3 shows an overview of the available
service-based metrics and how they relate to each other.

ReactionTime: The time a service requires after a successful request has been made to
start the actual execution.

ServiceExecutionTime: The time the service actually takes to execute the request.

28



3.2 Performance Analysis Results

Figure 3.3: Performance measures based on the user and system/service activity phase
adapted from Jain (1990).

ServiceResponseTime: The total time it takes a service to answer a user request.

ThinkTime: The time it takes a user to think before launching the next request. Typically,
the user needs to process the response just received before being able to fire the next
request.

3.2.3 Resource-based Performance Metrics

In contrast to service-based performance metrics, resource-based performance metrics
focus on the inner workings of a system.

OperationExecutionTime: The time an operation spends actively computing something.
The waiting time for other, called operations is excluded.

OperationResponseTime: The total time an operation requires to complete.

ResourceCount: A discrete number of resources to quantify the particular size of parts
of the system.

Arrivals: The total number of arrivals a resource or system has during a time interval.
The arrival count is of a certain unit, e.g., messages, requests or tasks.

CompletedArrivals: The number of arrivals that have been completed.

ArrivalRate: The rate at which arrivals reach the specific resource or system.

ArrivalRate(Ri) = Arrivals(Ri)
T

(3.3)

29



3 Performance Analysis Abstraction

ArrivalCompletionRate: The proportion of arrivals that have been completed.

ArrivalCompletionRate(Ri) = CompletedArrivals(Ri)
Arrivals(Ri)

(3.4)

VisitCount: The number of visits a certain request has at a certain resource.

Throughput: The number of completed arrivals at a certain resource in a specific period
of time.

Throughput(Ri) = CompletedArrivals(Ri)
T

(3.5)

3.3 Variability-aware Performance Analyzers

In many domains, such as embedded systems engineering, software product lines (SPLs)
are used to build software systems. Traditional performance approaches neglect the
needs of a software architect designing a software product line, as traditional approaches
only allow a single software model to be analyzed. However, the software architect
needs to ensure that the QoS requirements, or in particular performance requirements
are met for all valid configurations.

The fastpan framework defines an abstraction for a variability-aware model analysis.
The abstraction assumes that the system model to be analyzed has an associated feature
model where configurations define which features are enabled or disabled. The system
model then exposes variability points that alter the model depending on whether a
feature is enabled or disabled. The fastpan abstraction provides a means to analyze
these variability-aware system models.

The interfaces depicted in Figure 3.4 are used to define a variability-aware performance
analysis. The entry point to the variability analysis is the VariabilityAnalyzer and
analogously to the performance analysis of a single system, the variability analyzer is
considered to be a stateless factory of a respective context class that conducts the actual
analysis and is stateful. An implementation of the VariabilityAnalyzer needs to
be parametrized with three different classes:

• SYSTEM: References the system model that is obtained when applying a specific
configuration to a system with variability points.

• CONTEXT: Defines the VariabilityContext of the analyzer, that conducts the
actual analysis and stores the analysis state.

• FEATURE: A class representing a single feature that can either be enabled or
disabled for a specific configuration.

30



3.3 Variability-aware Performance Analyzers

VariabilityAnalyzer

capabilities()
setupAnalysis(cp: ConfigurationProvider, sp: SystemProvider): CONTEXT

SYSTEM
CONTEXT: VariabilityContext<SYSTEM, FEATURE>
FEATURE

ConfigurationProvider

configurations(): Configuration[*]

FEATURE

SystemProvider

systemFor(c: Configuration): SYSTEM

SYSTEM
FEATURE

VariabilityContext

analyze()

SYSTEM
FEATURE

Configuration

isEnabled: boolean
featureFlags: boolean[*]

FEATURE

FeatureModel

features: Feature[*]

FEATURE

featureModel

Figure 3.4: Required interfaces to define a variability-aware performance analysis with
the fastpan framework.

To setup a VariabilityContext two parameters need to be supplied: A configu-
ration provider and a system provider. The configuration provides supplies a list of
configurations that should be analyzed by the variability analyzer. Currently, the fastpan
framework does not provide a full-fledged feature model. The implemented feature
model is a list of features and a configuration associates a boolean flag to each feature
stating whether the feature is enabled or disabled. Users of the framework will most
likely already have an existing feature model supporting constraints between features
and enhanced analyses, such as satisfiability checks. However, the interface definitions
of the fastpan framework are designed to integrate backing third-party feature models.
In addition to the configuration provider, the analyzer requires a system provider. The
system provider is used to derive a specific system for a given configuration allowing the
variability points to be tailored with the settings provided by the configuration.

Using the two providers, the VariabilityContext can iterate all configurations to
be analyzed and derive the specific system for each configuration. The context may
then analyze the system and store any results in the context class. The context does not
provide a uniform result interface similar to the regular performance analyzer, as the
results a variability analysis may yield are very different. For example, fastpan provides

31



3 Performance Analysis Abstraction

a BaseAnalyzer which uses any existing performance analyzer for a single system to
analyze the model derived for each configuration. The result of the BaseAnalyzer
thus is a map assigning a fastpan performance result to each analyzed configuration. In
contrast to that, another variability analyzer may analyze which feature combinations
have the most adverse effect on the resulting performance. In this case, the result of the
analysis would be a list of feature combinations.

32



Chapter 4

Introducing Performance Awareness in

IETS
3

The goal of the approach presented in this thesis is to add performance awareness to
the IETS

3 specification environment. Hence, the specification environment must treat
software performance as first-class citizen for component developers, system architects,
and domain experts already during the requirements elicitation and design phase of the
software to be built.

This chapter conceptually describes the approach developed in this thesis. Section 4.1
outlines the approach for a regular performance analysis of a system model, while
Section 4.2 outlines the approach for the variability-aware performance analysis. The
tooling infrastructure implemented to achieve the outlined approach is described in
Section 4.3. Finally, Section 4.4 explains how the existing IETS

3 editor was modified to
introduce the performance awareness.

4.1 Regular Performance Analysis

A regular performance analysis evaluates a single system defined in the IETS
3 modeling

language. In case feature modeling is used, the user has to choose the specific variant
that should be analyzed. A general overview of the approach is depicted in Figure 4.1
and consists of the following steps:

1. Create component model: The architects and domain experts model the system
and its requirements. Component developers supply reusable components with
performance-related annotations to model the expected performance behavior. The

33



4 Introducing Performance Awareness in IETS
3

Create 
component 
model

Choose 
configuration 
to analyze

Transform to 
prediction 
model

Execute 
prediction 
approach

Achitect 
feedback

Choose 
prediction 
approach

Figure 4.1: Conceptual overview of the approach. A user icon in the top right of a step
indicates user interaction.

architect may thus reuse existing components or use newly crafted components
when designing the system to meet the requirements.

2. Choose configuration to analyze: If the model contains variability points leading
to different configurations of a software product line, the user needs to choose a
single configuration to be analyzed. The approach then automatically derives a
system model for that particular configuration such that the succeeding steps of
the presented approach do not need to care about the feature modeling specifics
at all.

3. Choose prediction approach: The user needs to choose the performance analysis
approach that shall be used as performance analysis approaches differ in their
execution speed, their result precision, or other factors. Currently, the discrete
event simulation implemented in SimBench (Birken et al., 2010) is integrated
into the tooling, as well as the performance prediction infrastructure provided by
Palladio — currently focusing on the Layered Queuing Network solver (Koziolek
et al., 2008).

4. Transform to prediction model: Depending on the chosen analysis approach,
the IETS

3 model is programmatically transformed into a model required by the
particular approach. In case of the Palladio performance analyzers, the IETS

3

model is transformed into an equivalent instance of the Palladio component model.
The concepts and semantics of the IETS

3 model are retained in the PCM although
slight differences in the two modeling languages exist. The transformation is
detailed in Chapter 5.

5. Execute prediction approach: The prediction approach is automatically executed
on the transformed target representation of the system model. The results of the
approach are then normalized leveraging the fastpan performance abstraction (see
Chapter 3) before being lifted to the respective parts of the IETS

3 model.

34



4.2 Variability-aware Performance Analysis

Create 
component 
model

Choose set of 
configurations 
to analyze

Transform to 
prediction 
model

Execute 
prediction 
approach

Achitect 
feedback

Choose 
prediction 
approach

For remaining 
configurations
to be analyzed

Choose set of 
configurations 
with heuristic

Figure 4.2: Conceptual overview of the variability-aware performance analysis. A user
icon in the top right of a step indicates user interaction.

6. Architect feedback: The results of the prediction are visualized near the affected
parts of the model in IETS

3. Depending on the analysis, the user may be able to see
additional details upon interaction with the prediction result. Such an interaction
may include showing additional details of a result of a single node or filtering
certain results in order to provide the user with the precise information needed.

4.2 Variability-aware Performance Analysis

Feature modeling typically increases the number of valid configurations exponentially
with the number of available features. Hence, the performance prediction can usually
only be performed for a subset of all valid configurations. The configurations to analyze
can either be chosen by the user or by leveraging heuristics. In either case, the presented
approach is able to aggregate the performance analysis results in a way that is capable
of answering the performance question the user posed in the first place.

Figure 4.2 depicts the workflow for variability-aware performance prediction. A notable
change includes that instead of a single configuration to analyze a set of configurations
has to be determined. While the user may manually choose a set of configurations
to analyze, heuristics may be more suitable in helping the user find an answer to his
question. If, for example, the user might wants to know: “Which configuration of the
following incomplete feature model has the best response time for service X?”, a heuristic
could pick promising feature configurations that fulfill the constraints the user asks for.

35



4 Introducing Performance Awareness in IETS
3

The present approach is easily extendable to implement such heuristics, albeit no such
heuristics were implemented in the scope of this thesis.

When a set of prediction configurations to be analyzed is chosen, the user needs to
choose and configure the analysis approach to use. The approach then analyzes all
specified configurations and aggregates their individual results according to how the
user configured the approach. The user might be interested in detailed performance
results for each configuration, or might only be concerned about the utilization of a
particular resource. The approach implemented in this thesis supports to either gather
all performance results created by the individual configurations or to limit the scope to a
single model element to be analyzed.

4.3 Tooling Infrastructure and Integration

To predict the performance of a system the Palladio approach to software performance
prediction is employed (Koziolek et al., 2008). Palladio is built on the Eclipse platform
and provides a graphical user interface to model and analyze the software system. The
PCMs itself is built on the Eclipse modeling framework (EMF), inheriting the EMF tool
and runtime support. IETS

3 is built on the JetBrains Meta Programming System platform,
which is not built on the Eclipse platform nor has built-in support for the EMF. Hence, a
fundamental step of the approach presented in this thesis is to technically integrate the
Palladio tooling environment into the IETS

3 environment.

As MPS is based on a JetBrains IDE, the Eclipse environment required to run Palladio is
not available. The Eclipse environment is very important to Palladio, as it is used to load
and register required modules or to resolve files. To the best of our knowledge, Palladio
does currently not provide a headless runner to run analyses without a graphical user
interface. Hence, the ability to run Palladio analyses without a graphical user interface
outside Eclipse environments was added to our open-source libraries.

To achieve this, several projects have emerged in this thesis as depicted in Figure 4.3:

• Palladio Bridge: The Palladio Bridge project provides all Palladio dependencies
repackaged as Maven project. The project fetches the latest Palladio version from
the Palladio Eclipse update site and bundles Palladio such that it can be declared
as Maven dependency (Palladio Headless Bridge Project).

• Palladio Environment: The Palladio Environment project simulates an Eclipse
environment tailored towards the Palladio project. It mocks certain services to
ensure Palladio works as expected. The project contains technical quirks to be

36



4.3 Tooling Infrastructure and Integration

Palladio Bridge

Palladio Environment

Palladio Builder Palladio Analysis

Fastpan

Fastpan Variability 
Analyzer

Figure 4.3: Overview of the projects developed for the approach presented in this thesis.
The arrows indicate a dependency.

able to run Palladio without OSGi and without the Eclipse resource loaders (Keller,
2016b).

• Palladio Builder: The Palladio Builder provides a fluent Java builder API to
construct PCM models on the fly. Essentially, the API creates the Palladio EMF
models for a PCM instance and ensures the individual objects are properly refer-
enced (Keller, 2016b).

• fastpan: The fastpan project provides the performance analysis abstraction pre-
sented in Chapter 3. The performance abstraction provides interfaces and classes
to implement a performance analysis approach for a specific target model (Keller,
2016a).

• Palladio Analysis: The Palladio Analysis project provides an implementation of the
fastpan abstraction for the Palladio component model. The Palladio analyses are
executed headless, i.e., without the Eclipse environment running. Currently, only
the Palladio PCM2LQN analysis leveraging layered queuing networks is supported
but the approach is extensible to support other approaches as well.

• fastpan Variability Analyzer: The project implements an approach to analyze a
variability-aware model by analyzing individual configurations. The implemented
approach is based on decision trees (Valov, 2014) and is able to use any fastpan
implementation (such as the Palladio Analysis project) to analyze the configura-
tions (fastpan Variability Analyzer Project).

All of the above projects contribute to introducing performance awareness in IETS
3.

First, a fastpan performance analyzer is defined for the IETS
3 model. The performance

37



4 Introducing Performance Awareness in IETS
3

analyzer uses the Palladio Builder project to conduct a model-to-model transformation
from the IETS

3 model to the Palladio component model. Once transformed, the Palladio
component model is passed to the existing solver infrastructure with the help of the
Palladio Analysis project, particularly using the simulations and the PCM2LQN trans-
formation (Koziolek et al., 2008). The existing Simbench performance analyzer has
also been wrapped in a fastpan performance analyzer. Both analyzers are capable of
lifting the performance results of their analysis to the various model elements of the
IETS

3 model. The strongly-typed performance results obtained by a fastpan performance
analyzer are then used to render the results in the user interface of IETS

3.

4.4 Performance Awareness in IETS
3

With the Simbench language extension, IETS
3 treats the definition of performance be-

havior of components as first-class citizen. Simbench provides an extensive language
to express performance demands of components. Figure 4.4 shows an example re-
source definition for a component. Resource demands are defined for certain triggers
of the component denoted by the on <trigger> <operation> notation. The pro-
vided example defines a resource demand for a regular component call which are
either provided or required by the component. The resources demands are then or-
ganized in milestones, which are named blocks that relate certain resource demands
(action_internal in the example). Multiple milestones specify sequential resource
demands. After all milestones complete, the resource demand may specify to call other
triggers, as in the example the plan operation calls the book operation. Milestones
contain actual resource demands, such as reading from or writing to resources, or
processing time. The example contains a variant-specific processing time demand,
yielding a different processor usage depending on which customer is selected in the
configuration.

4.4.1 Defining performance requirements

Modeling the performance behavior is an important part of the modeling language,
but equally important is the definition of performance requirements such that the
fulfillment of the requirements can automatically be determined. The existing early-
stage requirements specification of Simbench has been enhanced in this thesis to express
performance requirements of any kind.

Figure 4.5 shows an example of how requirements are specified. A requirement may be
specified by up to six aspects, of which currently the first three are implemented:

38



4.4 Performance Awareness in IETS
3

Figure 4.4: A sample component in the IETS
3 notation defining the performance behav-

ior of a single operation with variant specific resource demands.

Figure 4.5: A sample scenario and use case definition in the IETS
3 notation specifying

performance requirements that need to be met for all use cases of the
defined scenario.

1. A specific performance measure such as the utilization needs to be constrained.
The available quantities relate to the quantities defined in the fastpan framework.

2. The requirement targets a specific model element. Of course, the selectable
model elements should be elements that are annotated by performance analysis
approaches.

3. A (numeric) target value of the requirement, such that it is possible to verify
whether the requirement is met or not.

39



4 Introducing Performance Awareness in IETS
3

4. An indication of whether the requirement is classified as MUST-have, SHOULD-
have, or NICE-to-have. Currently, all requirements are assumed to be MUST-haves.

5. Target a specific performance metric such as the average or median. Currently, all
requirements are assumed to be an average metric.

6. Lifetime constraints that refine the requirement over time. For example, the
requirement “allow a spike utilization above 60% only once in every X minutes”.
Currently, all requirements are assumed to hold all the time.

With the given features, the requirements language is expressive enough to define
realistic requirements. Enriching the requirements language with the further features
is regarded future work. Also, not all performance analysis approaches support the
evaluation of timing-specific behavior - a powerful requirements language limits potential
analysis approaches from being able to verify the requirements.

4.4.2 Configuring the performance analysis

When the architect has finished modeling the components, the component connections,
the allocation onto hardware and typical use cases, the performance analysis can be
configured. The Simbench language provides a system concept to define performance
analyses, as shown in Figure 4.6. The analysis is defined for a certain system (the root
component instance) using a certain allocation onto hardware (the partitioning) under
a certain scenario. If needed, a feature model to analyze can explicitly be set using
the feature models attribute. In the scope of this thesis, the system concept was
enhanced to support a set of configurations to analyze under the configurations
attribute, as an integral part of the contribution of this thesis is to support the perfor-
mance analysis of software product lines. After configuring the analysis, a performance
analyzer can be started from the context menu of the system concept.

Two performance analyzers were implemented in the scope of this thesis: a performance
analyzer based on Palladio that analyzes a single system and visualizes the result
thereof, and a variability-aware analyzer being capable of analyzing and visualizing
a set of system configurations. The implemented visualizations completely rely on
the performance result abstraction of the fastpan framework (Chapter 3). Hence, any
performance analysis approach can be implemented and easily integrated into the
existing eco system. The result visualization and user interactions implemented are
detailed in the following sections.

40



4.4 Performance Awareness in IETS
3

Figure 4.6: The system concept is used to define a performance analysis.

4.4.3 Regular Analysis Results

A regular performance analysis analyzes a single system which is obtained by a single
configuration if feature modeling is used. In case of the Palladio analysis, the system is
transformed to a Palladio component model (detailed in Chapter 5) and then analyzed
by the Palladio LQN solver. The results of the Palladio analysis are expressed with the
fastpan framework and are lifted to the IETS

3 model with tracing information stored
during the model-to-model transformation.

Figure 4.7 shows the visualization of the performance results of a single analysis. The
results are rendered to the right of the affected element and are highlighted with a
background color to make it easy for users to visually distinguish parts of the model
and the analysis results. The results show the actual performance measure of the result,
which in this case is the utilization, and the performance metric the measure is expressed
in; in this particular case the shown utilization is a mean value.

Requirements Fulfillment
The approach presented in this thesis allows to automatically determine whether require-
ments are fulfilled or not. The current implementation of the requirements verification
checks whether the specified model element has an attached performance result of the
specified metric (currently only the Average metric) and of the specified type. Hence,
the verification of a single requirement may yield three different states: the requirement

41



4 Introducing Performance Awareness in IETS
3

Figure 4.7: Single performance result visualization. Shows the mean utilization that is
predicted for each of the processors.

Figure 4.8: The performance analysis result allows to automatically verify whether each
requirement is fulfilled or not.

is fulfilled, the requirement is not fulfilled, or it is not decidable whether the requirement
is fulfilled or not.

Figure 4.8 shows an example how all three requirement fulfillment states are visualized
below the requirements definition. If available, the actual result is rendered next to
the state so that the user immediately sees the difference between the requirement and
the performance result. The actual value gives the user an impression of how close the
requirements are fulfilled or not fulfilled.

Future work may include a more sophisticated requirements checker. For example, a
performance result specifying a result using a maximum metric that is lower than the
requirement specified as average metric surely is fulfilled, but the current approach does
not handle these cases.

42



4.4 Performance Awareness in IETS
3

Figure 4.9: Requirements fulfillment overview for all configurations of the performance
analysis. The boxes can expose a state (e.g. good) to help the user with the
summary interpretation.

4.4.4 Variability Analysis Results

The variability analysis typically analyzes a set of configurations. Annotating the results
of all configurations to all model elements would clutter the user interface with results
and be of no use to the user. Furthermore, a variability analyzer may not even produce
specific performance results for the configurations, but instead determine feature com-
binations that lead to a low/high performance. As the visualization of the variability
analysis result may be highly specific to the analysis approach, in most cases a tailored
visualization makes the most sense. However, the approach implemented in this the-
sis defines a common, reusable and flexible visualization format and user interaction
concept for variability analysis results.

Results for a single configuration are presented next to the configuration definition as
depicted in Figure 4.9. The displayed box provides the following information to the
user:

1. Description: The description contains a human-readable summary of the analysis
result. The description should not be too long, but contain the most important
aspects of the result.

2. State: The box can show a state helping the user interpret the summary. Currently,
the state supports the following severities: INFO for indicating an informational

43



4 Introducing Performance Awareness in IETS
3

Figure 4.10: Performance result of a single node in comparison for all analyzed configu-
rations. The result being displayed is selected by the user.

result, WARNING to indicate that the users attention is required, ERROR to indicate
that the analysis has revealed an error or SUCCESS to indicate that the analysis
has revealed no error.

3. Active: The box has an active flag indicating whether details of the selected
configuration are currently visualized elsewhere.

As such, the box result visualization imposes no assumptions on the analyzer and is
thus reusable. An additional benefit is that the user of the system is accustomed to the
particular graphical representation of variability results and has a smaller learning curve
when using other analyzers.

The default variability analysis of the presented approach uses any existing performance
analyzer to analyze the system for each configuration. Hence, the analysis in fact yields
a regular performance result for each configuration. Using those results, Figure 4.9
shows the visualization of the summarized requirements fulfillment state of all analyzed
configurations. The box has the SUCCESS state if all requirements are fulfilled, an
ERROR state if at least one requirement is not fulfilled and a WARNING state if the
fulfillment of at least one requirement is not decidable for the configuration.

An intention1 can be used to show the result details of a single configuration, which
loads the visualization of the system as if it was analyzed with a regular performance

1In MPS, an intention is like a keyboard-triggered context menu

44



4.4 Performance Awareness in IETS
3

analysis (as described in Section 4.4.3). However, the visualization then has an ad-
ditional user interaction: when a performance result of a single node is selected (see
Figure 4.7) the user can focus the result of the specific node in the configuration overview
by using an additional intention. Figure 4.10 visualizes the performance result of a
selected node for all analyzed configurations. With that, the user can easily compare
the performance result of a single node (e.g. the utilization of a processor) across all
analyzed configurations.

45





Chapter 5

Model-to-Model Transformation

IETS
3 provides several language concepts to express component specifications, system

architectures built with the components, planned allocations onto hardware, and usage
scenarios for the designed system. On top, IETS

3 provides a feature model that tightly
integrates with the aforementioned concepts to express variability points on all aspects
of the model. As the IETS

3 DSL provides all information required by Palladio to conduct
a performance prediction for the system, a model-to-model transformation of the IETS

3

meta-model to the Palladio component model has been implemented to leverage the
performance prediction features Palladio provides.

This chapter highlights selected parts of the current implementation of the approach,
in particular the model-to-model transformation from the IETS

3 model to the Palladio
component model. The transformation is built using the MPS Java language, which
contains language enhancements tailored to building DSLs with MPS. An open-source
builder API1 to construct Palladio component models from Java has been built to ease the
writing of the transformation. As the models of IETS

3 and Palladio are not semantically
identical, a mapping to retain the semantic meaning of IETS

3 in the transformed PCM
instance was implemented. The source code of the implementation is available in the
provided supplementary material (Keller, 2016c).

5.1 Transformation Overview

The model-to-model transformation is split into multiple steps as shown in the step
dependency graph in Figure 5.1. The steps correspond to the top-level entities defined
in the PCMInstance class, which serves as the root object of a PCM instance. Due to

1https://github.com/DECLARE-Project/palladio-headless

47

https://github.com/DECLARE-Project/palladio-headless


5 Model-to-Model Transformation

Transform to 
Repository

Transform to 
ResourceEnvironment

Transform to 
UsageModel

Transform to 
RDSEFF

Transform to 
System

Transform to 
Allocation

Figure 5.1: The different steps of the IETS
3 to PCM transformation and their dependen-

cies.

the complexity of the repository and RDSEFF transformation the two transformations
have been split into separate steps, but are both part of a Repository in the PCM
instance.

The dependency graph indicates that a parallel transformation of the different steps is
possible. As the transformation has not yet been a limiting factor w.r.t execution time the
current implementation does not leverage parallelized processing of the steps. However,
during the design of the transformation architecture special care has been taken to allow
a parallelization of the steps in the future.

The transformation itself is built using the blackboard design pattern. Transformed ele-
ments are stored in shared context objects relating to the different transformation steps
inside a “blackboard” object. By accessing the context objects through the blackboard,
the transformators can read from and write to the respective context objects as required.
After all steps have completed the transformed PCM instance can be retrieved from the
blackboard.

For each step, multiple transformators can be registered which are then executed in the
sequence of their registration. Thus, the chosen architecture enables to define a basic
mapping to support a limited subset of IETS

3 that is very similar to the PCM meta-model
which is detailed in Section 5.2. The limited subset comprises enough modeling concepts
to conduct a valid LQN analysis in Palladio. Advanced modeling concepts of IETS

3

are then supported by chaining additional transformators, such as the support of the
SimTrigger concept as described in Section 5.3 shows.

48



5.2 Basic Transformation

Table 5.1: Mapping of IETS
3 data types to corresponding data types of Palladio.

IETS
3 Data Type Mapped Palladio Data Type

BooleanType Bool
StringType String
RealType Double
IntegerType Int

5.2 Basic Transformation

As a baseline, a basic transformation of IETS
3 concepts that are very similar to the

PCM meta-model has been implemented. The transformation yields a valid and analyz-
able Palladio instance, as the transformation to all important modeling concepts of a
PCM instance are supported. The following sections detail each transformation step,
respectively.

5.2.1 Transform to Repository

The PCM repository hosts the component definitions, including the operations the com-
ponents provide or require. In IETS

3, components are connected by ports of a certain
type. The ServicePortType is the most basic port type and represent a connec-
tion between components connecting components through ServiceDefinitions. A
ServiceDefinition is an interface that describes a collection of available operations
with their parameters and a return type. Though the object hierarchy seems fairly
complex, a one-to-one mapping of the concepts between the IETS

3 model and the PCM
model is possible as seen in Figure 5.2.

IETS
3 ships with a sophisticated and extensible expression language that has various

primitive and complex data types. All operation definitions in IETS
3 may use all available

types to define parameters or return types, such as functions, maps, records, or enums.
As a proper mapping to Palladio’s data types is impossible for some of the types, only
a subset of all available data types is currently supported. In particular, Table 5.1
summarizes the mapping of all supported primitive types.

49



5 Model-to-Model Transformation

IETS3 Component Definition

IETS3 Service Definition

PCM Service Definition

PCM Component Definition

contents

*

Port

category

type

*

*

OperationProvidedRole

providedRoles *

OperationRequiredRole

requiredRoles *

*

BasicComponent

OperationSignature

+parameters: Parameter[0..*]
+returnType: DataType[1]

OperationInterface

IComponentContent Component

PortCategory

ProvidesPortCategory UsesPortCategory

IPortType

ServicePortType

Operation

type: Type[1]
parameters: Parameter[0..*]

ServiceDefinition

service requiredInterface

providedInterface

Figure 5.2: Mapping of ordinary components defined in IETS3 to the Palladio compo-
nent model.

5.2.2 Transform to ResourceEnvironment

Transforming the resource environment is a crucial part of the model-to-model transfor-
mation, as retaining the semantics of the IETS

3 resources in a PCM is required to gain
useful results from the performance analysis. IETS

3 currently has three different con-
cepts to express a resource environment: processors to model computational resources,
resources to model bandwidth-limited resources (e.g., a hard disk) and pools to model
resources with a fixed upper usage limit (e.g., RAM).

Processors

A processor in IETS
3 is defined by two values: a normalization factor (i.e., the processing

speed) and a discrete number of cores that are capable of processing tasks in parallel. As
depicted in Figure 5.3, each processor is mapped to a Palladio ResourceContainer
with a ProcessingResourceSpecification having the numberOfReplicas set
to the corresponding value of the IETS

3 model. The processingRate is fixed to 1
despite the normalization factor modeled in the IETS

3 model, as the factor is already

50



5.2 Basic Transformation

PCM Resource EnvironmentIETS3 Hardware Definition

IResource ResourceEnvironment

CommunicationLinkResourceSpecification

communicationLinkResourceType = LAN
latency = 0.015
throughput = 2000000000

resourceContainer *

ProcessingResourceSpecification

processingRate = 1
activeResourceType = CPU
numberOfReplicas = cores
schedulingPolicy = PROCESSOR_SHARING

activeResourceSpecifications

*

connectedResourceContainers
*

Processor

cores: int
factor: real

ResourceContainer

LinkingResource

Figure 5.3: Mapping of a CPU in IETS
3 to a Palladio ResourceContainer.

taken into account when calculating the actual resource demands of the IETS
3 model.

Hence, all IETS
3 resource demands are normalized w.r.t. the factor of the processor they

are deployed on and thus, the corresponding Palladio resource containers must all have
the same processingRate. By default, the activeResourceType is set to CPU
and the schedulingPolicy to PROCESSOR_SHARING as the IETS

3 model assumes
that processing power is evenly split between all pending tasks. Note that the IETS

3

model assumes that all components can communicate with each other, regardless on
which processor they are deployed. To transform this assumption to the PCM model, an
artificial LinkingResource with the default values specified in Figure 5.3 is created
that connects all transformed ResourceContainers.

Resources

IETS
3 resources are currently not supported by the model-to-model transformation,

as the IETS
3 resources have modeling capabilities that cannot be mapped to Palladio

resource containers:

• Induced load: IETS
3 resources model an induced load as percentage, that induces

extra load on the processor that is currently accessing the resource. The induced
load is an important modeling concept and used in real-world models to account
for extra processing power required for resources access, e.g., to model access to a
resource with on-the-fly compression of the data. While such a modeling capability
is missing from the Palladio component model, it would be possible to support
the induced load by generating intermediate components to handle the resource
access, that create the induced load by specifying respective resource demands.

51



5 Model-to-Model Transformation

• Context switching time: IETS
3 resources model a context switching time as

percentage, that induces extra load on accessing processors if and only if the
resource is being accessed concurrently. Palladio currently has no such modeling
capabilities and a model construct accounting for the context switching time is not
feasible in the PCM.

• Multiple interfaces: IETS
3 supports multiple interfaces to a single resource, each

specifying its own bandwidth, induced load and context switching time. Semanti-
cally, the multiple interfaces access the same underlying resource and thus compete
for the processing power of the resource. Multiple interfaces are used for example,
to model a flash memory resource with a standard interface, a direct IO interface
and a compressed interface, each parametrized differently to take their actual
speeds into account. Palladio currently has not capabilities to model multiple
interfaces for a single resource and hence, this feature could only be supported
by generating intermediate components to handle the resource access by offer-
ing operations corresponding to the different interfaces and issuing the required
resource demands.

While it would be possible to account for some of the IETS
3 resource modeling capabilities

in the corresponding Palladio component model, the transformation would create
complex generated model elements in the PCM that are still not able to fully retain the
semantics. Due to this, the transformation was not yet implemented during this thesis,
as it is more beneficial to investigate the use cases of the resources in real-world projects
and see how the transformation can help architects in making good decisions. If feasible,
a viable alternative would be to use a simplified transformation of the IETS

3 resources
and accept some loss in precision of the result.

5.2.3 Transform to RDSEFF

Palladio resource demanding service effect specification (RDSEFF) allow to model
the resource consumption and behavior of the system components. Hence, when
constructing the RDSEFF it is important to preserve the semantic behavior of the
components defined in IETS

3. Figure 5.4 provides an overview of the mapping described
in this section.

In IETS
3 the performance-related behavior of a component is described in the

SimulationBehavior, which is denoted by the sim keyword as seen in the ex-
ample in Figure 5.5. Each simulation behavior may contain an arbitrary number of
behaviors, which are the corresponding elements to the ResourceDemandingSEFFs of
Palladio. A behavior comprises four aspects: triggers that determine when the behavior

52



5.2 Basic Transformation

PCM Resource Demanding Service Effect Specification

PCM Component Definition

IETS3 Performance Simulation Definitions

IETS3 Component Definition

Component

SimulationBehavior

contents *

IComponentContent

contents *

trigger

repeat

steps 1..*

sending *

Port

Operation

type: Type[1]
parameters: Parameter[0..*]

Behavior

OperationTrigger

ITrigger

IRepeat

Step

ILocalTriggerCall

Iterate ResourceDemandingSEFF

OperationInterface

*

serviceEffectSpecifications

*

providedRoles *

requiredRoles *

AbstractAction

steps

*

LocalServiceTriggerCall

OperationSignature

OperationRequiredRole

OperationProvidedRole

BasicComponent

ResourceDemandingBehaviour

InternalAction ExternalCallAction

RepeatUnless

LoopAction

operation

port

requiredInterface

describedService

providedInterface

Figure 5.4: Mapping of simulation behavior in IETS
3 to a Palladio RDSEFF. The dashed

lines denote corresponding model elements.

is executed, an optional repeat declaration for looped behaviors, steps modeling the
actual resource demands, and sending declarations to invoke other trigger definitions.

Behavior Triggers
The simulation behavior is triggered by a certain type of trigger, with the
OperationTrigger representing a regular one-directional call to an operation of
a service definition.

Behavior Repeats
The simulation behavior specification in IETS

3 supports loops only on a complete behavior
definition. The Iterate loop definition iterates for a specified number of times and
can directly be mapped to the Palladio LoopAction.

53



5 Model-to-Model Transformation

Figure 5.5: Example IETS
3 resource demand, specifying a processor demand and a call

to another component.

The RepeatUnless declaration repeats the modeled behavior until a certain predefined
trigger was called. As there is no AbstractAction in Palladio available that has a
similar behavior, the RepeatUnless loop is currently not supported.

Behavior Steps
The Step concepts contain the actual procedural control flow logic of the behavior.
Most aspects defined in the steps can be mapped to InternalActions with a resource
demand, for example the UseAction models CPU consumption, and ReadAction or
WriteAction model the access to a bandwidth-limited resource, such as a hard disk.

Behavior Sending
A sending declaration is a call to another trigger, i.e., it invokes the behavior modeled
in another simulation behavior. A LocalServiceTriggerCall is a call to another
OperationTrigger which can be mapped to an ExternalCallAction in the Pal-
ladio RDSEFF.

The example in Figure 5.5 defines a behavior step with a processing power demand
of 0.3 and a behavior sending call to another component through the used interface of
the component.

5.2.4 Transform to System

The system structure models the connections between the actual instances of
components. In IETS

3 the instances and their connections are defined in the
ComponentSubstructure inside of a component. Any component may contain a sub-
structure which allows to model a hierarchical component structure. The transformed

54



5.2 Basic Transformation

PCM System DefinitionIETS3 System Definition

ComponentComponentSubstructure
substructure

0..1

ISubstructureContent

contents*

AssemblyConnector

sourceInstance: ComponentInstance
targetInstance: ComponentInstance
sourcePort: Port
targetPort: Port

DelegationConnector

component

parameterValues

*

param
AssemblyConncetor

requiringAssemblyContext: AssemblyContext
providingAssemblyContext: AssemblyContext
requiredRole: OperationRequiredRole
providedRole: OperationProvidedRole

assemblyContexts *

Connector

connectors *

ProvidedDelegationConnector

assemblyContext: AssemblyContext
innerProvidedRole: OperationProvidedRole
outerProvidedRole: OperationProvidedRole

RequiredDelegationConnector

assemblyContext: AssemblyContext
innerRequiredRole: OperationRequiredRole
outerRequiredRole: OperationRequiredRole

AssemblyContext

encapsulatedComponent: RepositoryComponent

System

ComponentInstance ParameterValue

value: Expression

Parameter

defaultValue: Expression[0..1]
type: Type

ExportConnector

targetInstance: ComponentInstance
outerPort: Port
targetPort: Port

ImportConnector

sourceInstance: ComponentInstance
outerPort: Port
sourcePort: Port

Figure 5.6: Mapping of the IETS
3 component instances to PCM’s assemblies.

PCM does not retain the hierarchical structure and instead has a flattened view of the
components.

Figure 5.6 show the corresponding system modeling concepts between IETS
3 and

the PCM. An IETS
3 component featuring a substructure has an arbitrary number of

ComponentInstances that are mapped to a PCM AssemblyContenxt. Both con-
cepts reference their respective component definition. In IETS

3, a component definition
may define required or optional typed parameters, that can be accessed from various
expressions from within the component. The value of the parameters are either set to
a default value or can be specified when defining the component instance using the
ParameterValue specification. Currently, the parameters are primarily used to pass
feature models to the component such that feature-specific behavior can be expressed
within the component definition. However, the parameter concept is not limited to that:
it is certainly possible to use the parameters within resource demand expressions. While
such a parametrized resource demand could easily be mapped to the PCM model, there
are expressions that are not easily ported to the PCM, such as LambdaExpressions
to define lambda functions. To support such a versatile parameter concept it would
be necessary to know whether the parameters can and should be evaluated before
transforming to the PCM or whether the parametrization concept should be retained in
the transformed PCM. As this depends on the intended use cases, the parameter concept
is not yet supported in the model-to-model transformation.

55



5 Model-to-Model Transformation

PCM AllocationIETS3 Partitioning

Partitioning Component
root

FunctionBlockMapping

mappings *

Processor

instance

processor

AllocationContext

AssemblyContextResourceContainer

Allocation

allocationContexts *

resourceContainer assemblyContext

ComponentInstance

component

Figure 5.7: Mapping of the IETS
3 partitioning to the PCM allocation concept.

The IETS
3 component substructure needs to further define the connections between

the component instances. All connections correspond to a ServiceDefinition
representing the interfaces that need to match to make a connection. To connect two
components over a common interface an AssemblyConnector is used both in IETS

3

and the PCM. The component hosting the component substructure can provide or require
services definitions itself. These provided or required services are provided to or required
from the “outer” system and can thus be mapped to the corresponding concepts of the
PCM.

5.2.5 Transform to Allocation

The IETS
3 partitioning maps component instances to the available processors. Due to

the hierarchical structure of the component model, the partitioning may also assign any
nested components to a different processor than any of its parents. As the component
model in the transformed PCM is flattened, the Palladio allocation can easily be mapped
as shown in Figure 5.7.

An IETS
3 FunctionalBlockMapping assigns a single component instance to a sin-

gle processor. The concept can be mapped to a Palladio AllocationContext
referencing the respective AssemblyContext of the component instance and
ResourceContainer of the processor.

5.2.6 Transform to UsageModel

The usage model defines system usage scenarios for which the performance is relevant.
In IETS

3 there are two relevant concepts to define the behavior. First, a UseCase is
attached to the system’s root component and defines triggers that invoke certain behavior

56



5.3 Supporting SimTriggers

PCM Usage ModelIETS3 Scenario Definition

Scenario

Component
root

UseCase
usecases

IRequirement

requirements

root

ITriggerCall

triggers

UsageModel

UsageScenario

usageScenario

ScenarioBehaviour
scenarioBehaviour

Workload

workload

OpenWorkload ClosedWorkload

AbstractUserAction

steps *

EntryLevelSystemCall

Figure 5.8: Mapping of the IETS
3 scenario to the PCM usage model concept.

of the system. A set of use cases are then grouped to a scenario that defines performance
requirements which need to be met for all use cases.

Figure 5.8 shows the conceptual mapping of the IETS
3 usage model to the PCM usage

model. PCM supports equivalent concepts for the scenario and uses cases, which
are directly mapped to. The PCM ScenarioBehaviour is more powerful in terms
of describing the scenario behavior, as next to calling services it also supports loops,
branches and delays. As those are not present in the IETS

3 model, all IETS
3 trigger calls

are directly mapped to a PCM EntryLevelSystemCall. In order to construct a valid
PCM, the operations referenced by the EntryLevelSystemCall need to be properly
provided to the system in the system transformation step.

5.3 Supporting SimTriggers

Resource demands of regular component interactions are defined with the on call
keyword and are directly mapped to Palladio’s RDSEFF. In addition to that, the trigger
concept allows components to define arbitrary communication and invocation paths
regardless of their structure and hierarchy in order to model environmental events and
their performance impact (such as the sudden re-routing while playing radio in a car
infotainment system). During the transformation the triggers are mapped to artificial
PCM interfaces which are connected appropriately in the resulting PCM system. The
variable resource demand is evaluated for a specific variant before transforming to the
PCM, such that the feature-specific resource demand is a regular numeric value during
the transformation.

57



5 Model-to-Model Transformation

Figure 5.9: Example usage of the IETS
3 SimTrigger concept with a hierarchical compo-

nent organization.

The transformation of the SimTrigger concept is done in four steps that are intermingled
with the steps of the basic transformation described in Section 5.2. Figure 5.9 is used
as running example in this section to describe the transformation. Figure 5.9 contains
three components with a hierarchical organization: DB, Payment, and Booking. As
seen from the example trigger calls in the Booking component, the SimTrigger concept
can call nested components of arbitrary depths. Notably, the triggers do not require any

58



5.3 Supporting SimTriggers

services to be able to call other triggers. As the SimTrigger concept is transformed to a
regular Palladio component model, several interfaces and their required and provided
roles need to be generated by the transformation.

Step 1: Transform SimTrigger declarations to PCM interfaces

The first step of the transformation involves the generation of an interface for each
SimTrigger definition (represented by on trigger <name> in the example). The
generated interface contains a single operation without arguments called trigger,
which merely allows the interface to be called by other components. Finally, the
component containing the SimTrigger definition provides the generated interface as
if it was a regular interface of the component. In the example shown in Figure 5.9,
the triggers scaleOut, highFrequencyPayments, and christmasSale yield a
generated interface.

Step 2: Transform SimTrigger calls to PCM required roles

This transformation step is looking for the components that need to require the interfaces
generated in the first step. As the triggers are implicitly available everywhere, this step
scans all SimTrigger bodies of all components for trigger calls (e.g., the Booking
component calls a nested SimTrigger via trigger Payment.DB.scaleOut). As the
target of the call is a SimTrigger definition, the transformation retrieves the generated
interface of step 1 for the SimTrigger and adds the interface as required interface to
the component issuing the trigger call. The transformation takes care to require the
interface only once for each component. In the example shown in Figure 5.9, only the
Booking component has trigger calls and hence, requires the two generated interfaces
referenced by the call.

Step 3: Transform each SimTrigger body to a PCM RDSEFF

The body content of each SimTrigger has the same structure and semantics as a regular
call definition. Hence, the contents of the SimTriggers are transformed to RDSEFFs
identical to a regular component call. As in this step, all component already provide and
require the generated interfaces, the trigger calls can be transformed to regular Palladio
ExternalCallActions.

Step 4: Connect the generated required and provided interfaces in the assembly

As a last step, the modeled system needs to have all the required and provided interfaces
generated during the SimTrigger transformation to be connected. Hence, the transforma-
tion adds a connection between each valid pair of required and provided interfaces. In
the example shown in Figure 5.9, the transformation connects the Booking component
to the Payment component, as well as the Booking component to the DB component
through the generated interfaces.

59





Chapter 6

Quantitative Evaluation

To evaluate research question RQ4 a set of experiments was conducted. The experiments
measure the execution time of the approach, from triggering the analysis to rendering
the results in the user interface. The following times were measured:

• Total time: The total time it takes for the approach from triggering the analysis to
rendering the results in the user interface.

• SimModelWrapper time: Prior to the model-to-model transformation, a
SimModelWrapper class prepares the IETS

3 model for the transformation. As the
preparation is non-trivial, it’s execution time was measured.

• Model-to-model transformation time: The time it takes for the IETS
3 model to be

transformed to a PCM instance by the developed model-to-model transformation.

• Analysis time: The time it takes for the underlying performance prediction ap-
proach (e.g., the Palladio LQN solver) to predict the performance of the model.

Each individual experiment was repeated twelve times in a row and the first two results
were discarded to prevent a possible ramp-up time from skewing the measurement
results. Table 6.1 shows the hardware and software specifications of the laptop on which
the evaluation was conducted.

The models generated for the analysis are all generated using the same procedure from
an architecture definition. The architecture definition models a component with three
parameters: the name, the number of occurrences and a list of dependencies (other
components names). A list of those definitions forms the evaluation architecture. From
such a list, the actual IETS

3 model is constructed as follows:

61



6 Quantitative Evaluation

Table 6.1: Hardware and software specifications of the laptop the evaluation was con-
ducted on.

Evaluation Environment Specifications

Hardware
Processor (CPU) Intel(R) Core(TM) i7-4700MQ CPU at 2.40 GHz per core
Memory (RAM) 16 GB
Hard Disk Drive 256 GB SSD

Software
Operating System (OS) Windows 10
Java 1.8.0
JetBrains MPS 3.3.5

1. Generate components: Generate a new component for each occurrence. That is,
if there is a component named db, with an occurrence of three times, then three
artificial components are generated: db_01, db_02, and db_03. Each component
is then allocated exactly once.

2. Generate service: Create a new service with a single operation for each required
dependency of a component. Then the component defining the dependency
requires the service while the dependency itself provides the service. This is
repeated for all occurrences of the component. For example, a component app
with two occurrences depending on the component db with two occurrences yields
six different services.

3. Create service calls: The components are connected by defining resource de-
mands for the provided services by first, adding a CPU resource demand of 0.01
and then calling all dependent services of all occurrences.

In addition to the components, the evaluation architecture defines a single entry compo-
nent that is being called first.

6.1 Linear Evaluation

The linear evaluation uses an artificially generated chain of components that is
parametrized by the number of components in the chain. Hence, the number of compo-
nents, the number of services and the number of service calls scales linearly with the
parameter. Clearly, the modeled system does not resemble the architecture of a realistic

62



6.1 Linear Evaluation

Palladio Analysis Time
Remaining Analysis Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2000

4000

6000

8000

Linear Model Analysis

A
n

al
y

si
s 

T
im

e 
[m

s]

Number of Components

Figure 6.1: Median execution time of ten repeated runs of the linear evaluation model.

system in an appropriate way. However, the evaluation determines the impact of the
model complexity on the execution time of the approach developed in this thesis and is
thus suitable as an indicator whether the performance awareness approach is executing
fast enough.

Figure 6.1 shows the median execution time of the approach developed in this thesis for
the linear evaluation model parametrized by the number of components contributing
to the model. The execution times shown are the median values of all ten measured
execution times. The plot shows a stacked line chart, where the blue, upper line
is the fraction of the total time spent in the Palladio LQNS solver and the bottom,
green line shows the remaining time spent in the developed approach, comprising the
SimModelWrapper time and the model-to-model transformation time.

The plot indicates, that the performance awareness approach developed during this
thesis has a constant overhead for the tooling infrastructure and model-to-model trans-
formation. With an increasing model size, the Palladio analysis shows a more than linear
increase in processing time until the model consists of 30 unique components. With the
given analysis configuration, the Palladio LQNS solver was not able to analyze linear
models consisting of more than 30 components.

To answer research question 4, the developed approach is able to execute a performance
analysis within ten seconds, but the execution time depends on the model size, strongly
increasing for more than 20 components.

63



6 Quantitative Evaluation

6.2 Simianviz Evaluation

In contrast to the linear evaluation, the Simianviz evaluation aims to evaluate the
scalability of the approach developed in this thesis using realistic architectures. The
architectures used for the evaluation are taken from the Simianviz1 project, which
aims to simulate monitoring data for realistic microservice architectures. By seeing
each microservice as a component in the context of this thesis, the architectures of the
Simianviz project minimize the threat to external validity as they have been manually
curated by a domain expert.

The Simianviz architecture definitions have a similar format to the architecture definition
used for this analysis. Hence, the architecture definitions can directly be mapped and
preserve their connection characteristics. To analyze the scalability, the architecture
definitions were parameterized by a single parameter n, indicating the maximum number
of occurrences of a single component. Hence, all components having a higher number
of occurrences than the parameter n are scaled down to the parameter.

Figure 6.2 shows the performance analysis times of the different architectures for
different values of n. The architecture names refer to the names of the architecture
JSON files contained in the Simianviz tool. Each name is followed by a bracket (a, b)
where a denotes the number of components in the derived system b denotes the number
of connections (i.e., service definitions) between the components.

The plot shows that the median analysis time of all architectures is below 500 ms, while
the slowest two analysis runs take around 10 seconds to complete. In general, the time
it takes to analyze a certain system has a very low variance and thus, the execution time
of the approach is very reliable.

The parameter has been set to n = 1, n = 2 and n = 3, but not all architectures derived
from the parameters were analyzable. For n = 1 all eleven architectures were analyzable,
for n = 2 only 6 architectures were analyzable, and for n = 3 there were 5 architectures
left. When increasing n, the architecture definitions contain more components and
connections leading to a model that is too large for the Palladio LQN solver, similar to
the upper bound detected in the linear evaluation (see Section 6.1). Hence, some of the
generated models are not analyzable and are thus not included in the evaluation.

1https://github.com/adrianco/spigo

64



6.2 Simianviz Evaluation

Spigo Analysis

Analysis Time

Aws_ac_ra_web (11, 13)

Aws_ac_ra_web (13, 18)

Aws_ac_ra_web (8, 7)

Cassandra (10, 15)

Cassandra (6, 5)

ComposeV2 (10, 17)

ComposeV2 (13, 24)

ComposeV2 (7, 10)

Container (7, 7)

Lamp (5, 4)

Lamp (7, 9)

Lamp (8, 13)

Netflix (18, 23)

Netflixoss (8, 8)

Riak (16, 17)

SimpleV2 (4, 3)

SimpleV2 (6, 5)

SimpleV2 (8, 7)

Storage (5, 4)

Storage (6, 5)

Yogi (9, 9)

100 200 400 800 1600 3200 6400 12800

Figure 6.2: Execution times of ten repeated runs of the Simianviz evaluation models.

65





Chapter 7

Conclusions and Future Work

7.1 Summary and Discussion

This thesis provides a proof-of-concept implementation for introducing performance
awareness in the IETS

3 integrated specification environment. This section summarizes
the findings of this thesis and discusses the research questions posed in the introduc-
tion.

Research Question 1: How can various model-based performance prediction ap-
proaches be abstracted to a uniform interface to leverage different analysis result
characteristics?

The research questions aims to bridge the technical gap between different performance
analyzers in order to build a technical foundation for declarative performance engineer-
ing. Chapter 3 describes the technical abstraction of the developed abstraction that is
used to integrate different performance analyzers. The developed abstraction provides
a means for integrating regular performance analyzers, as well as variability-aware
performance analyzers. To reason about performance results, the developed abstraction
provides a set of well-defined performance measures allowing performance results to be
strictly typed.

While the performance measures are straightforward to express analysis result of the
performance analysis for a single system, the variability-aware part of the abstraction
does not define a uniform result interface. This limitation is due to the fact, that the
results of a variability-aware analysis are manifold: the result could be a collection of
individual analysis results for each configuration, but could also be a set of features that
have a strong negative impact on the performance of the system.

67



7 Conclusions and Future Work

As a proof-of-concept implementation of the abstraction the Palladio performance analy-
sis tool suite is integrated into the IETS

3 environment leveraging the abstraction. Chap-
ter 5 describes the model-to-model transformation implemented to transform the IETS

3

model to the Palladio component model in order to leverage the Palladio performance
analyses.

Research Question 2: How can model-based performance predictions be inte-
grated in the IETS

3 specification environment to provide feedback to an architect
while designing the software system?

Providing feedback to the architect is a very important aspect of performance awareness,
as visual interfaces help people to perceive and filter relevant information. Chapter 4
details how the performance analyses are integrated into the IETS

3 specification envi-
ronment. The result visualization for a single performance analysis enriches two model
elements with result annotations. First, the affected model elements are annotated with
their respective performance results, similar to the profiling result visualization described
by Beck et al. (2013). Second, the performance requirements are automatically verified
with the actual performance results and are annotated to visually distinguish met and
unmet performance requirements. The visualizations provide the required information
at the exact location of the affected model elements. Hence, a user of the system has a
minimal cognitive overhead in locating and associating the results and instead can focus
on important tasks, such as interpreting the results or finding viable alternatives.

Currently, the expressiveness of the requirements is limited to only specifying average
thresholds. While the average value of a performance measure is certainly not able to
cover the requirements of a real-world system, future work should investigate typical
requirements of real-world projects. However, performance analyzers may only be
capable of providing certain metrics, such as the average value, in their analysis results.
Thus, the analysis results may not be able to be deduced to verify overly complex
requirements.

Research Question 3: How can model-based performance predictions be used to
provide feedback to an architect while designing software product lines?

Software product lines (SPLs) define a set of software systems, namely one for each
valid configuration. A key difficulty of designing software product lines is that only
some of the valid configurations may not fulfill performance requirements (e.g., due
to unforseen side-effects of feature interactions). Hence, it is of high interest to help
architects design SPLs that meet all performance requirements. Chapter 4 shows
how variability-aware performance analyzers are integrated into the user interface of
IETS

3 and how user interactions are used to raise the performance awareness in the
specification environment. The approach includes a language extension to the IETS

3

modeling language to define a set of configurations of the SPL to analyze. The list of the

68



7.2 Future Work

configurations to analyze is then used to visualize the results of the variability-aware
analysis. By default, the visualization shows how many requirements are met for each
configuration. Through user interaction, it is possible to show a single performance
measure of a model element for all configurations. For example, the architect is then
able to see the mean utilization of a processor for all analyzed configurations and can
immediately see which configurations may have a concerning performance.

Research Question 4: Is the approach capable of providing real-time performance
awareness?

As performance awareness is concerned about fast feedback cycles a fast execution
time of the analysis is preferred. Chapter 6 evaluates the performance and scalability
of the approach developed in this thesis. Chapter 6.1 evaluates the scalability on a
controlled model of linearly chained components, with 20 components analyzed in less
than 2 seconds and 30 components analyzed in under 8 seconds. Chapter 6.2 minimizes
threats to external validity by evaluating real-world component architectures provided
by Simianviz. The median of median analysis times of all analyzed architectures is
around 0.5 seconds.

The turnaround time for the approach developed in this thesis is perfectly suited for
real-time analysis that retriggers by user-intended changes to the model. A limitation of
the approach is the small number of components (less than 30) a system may consist of
to remain analyzable. The limitation may originate from the way the evaluation models
are built or from the chosen parametrization of the Palladio tool suite. Nevertheless,
the underlying LQN solver by Franks et al. (2005) can only solve models containing
up to 1000 entries, tasks, processors and entries per task, respectively. Typically, the
architectural model elements defined in IETS

3 and the transformed PCM expand to
multiple LQN model concepts, leading to models that quickly reach the LQN solver
limits. To improve the scalability either the solver can be improved to cope with larger
models or techniques can be designed to solve only relevant parts of the model, e.g., by
hierarchical decomposition.

7.2 Future Work

This section provides pointers to possible future work directions starting from the
research done in this thesis. The future work section is divided into short-term future
work and long-term future work.

69



7 Conclusions and Future Work

7.2.1 Short Term Future Work

Short-term future work focuses on improving the existing approach.

Model-to-model transformation: The model-to-model transformation currently sup-
ports a basic set of IETS

3 and PCM features. The model-to-model transformation
can be enhanced to support more sophisticated feature of both models to better
retain the semantics of the IETS

3 model in the transformed version.

Analysis Results: The user interface to display and interact with analysis results can be
improved by additional views and interactions. The views may include tabular or
graphical displays of the results with enhanced filtering and browsing concepts.
In addition to that, the results could be integrated with existing approaches to
modeling software performance measures (e.g., MAMBA by Frey et al. (2011)).

Performance Requirements: The performance requirements currently have a limited
expressiveness. Future work can improve the expressiveness of the results language
by supporting enhanced notations (e.g., for distributions), and also improve the
algorithm to determine whether a requirement is fulfilled or not.

7.2.2 Long Term Future Work

Long-term future work focuses on extending the existing approach by new concepts and
ideas.

Industry-scale user study: The evaluation conducted during this thesis was performed
by the author of the thesis and is inherently limited in it’s validity. A systematic
evaluation of the approach w.r.t. performance and scalability using an industry-
scale user study is desirable. In addition to that, a controlled experiment can reveal
how users actually benefit from the developed approach.

Variability analyzers: The developed approach provides only a rudimentary variability
analysis. To improve the performance evaluation and awareness support for soft-
ware product lines existing techniques from other contexts may be leveraged (Guo
et al., 2013; Valov, 2014; Zhang et al., 2016).

Automatic Selection: A transparent selection of model-based and measurement-based
evaluation techniques are of high interest to improve the usability (Walter et
al., 2016). Heuristics can help choosing an approach to optimize the end-user
experience in terms of the trade-off between prediction precision and analysis
runtime (Walter et al., 2016).

70



7.2 Future Work

Incremental analysis: To improve the real-time feedback loop supporting incremental
performance predictions is of high interest, as users typically only change small
parts of the model (Szabó et al., 2016) and require immediate feedback for the
changed parts.

71





Appendix

Bibliography

Beck, Fabian, Oliver Moseler, Stephan Diehl, Günter Daniel Rey (2013). “In situ under-
standing of performance bottlenecks through visually augmented code.” In: Proc. ICPC
’13, pp. 63–72 (cit. on pp. 22, 23, 68).

Becker, Steffen (2008). “Coupled model transformations for QoS enabled component-
based software design.” PhD thesis. Universität Oldenburg (cit. on p. 15).

Becker, Steffen, Heiko Koziolek, Ralf H. Reussner (2009). “The Palladio component
model for model-driven performance prediction.” In: J. Syst. Software 82.1, pp. 3–22
(cit. on pp. 1, 2, 8, 9).

Birken, Klaus, Daniel Hünig, Thomas Rustemeyer, Ralph Wittmann (2010). “Resource
Analysis of Automotive/Infotainment Systems Based on Domain-specific Models: A
Real-world Example.” In: Proc. ISoLA’10, Part II. Heraklion, Crete, Greece, pp. 424–433.
ISBN: 3-642-16560-5, 978-3-642-16560-3 (cit. on pp. 2, 18, 34).

Brunnert, Andreas, André van Hoorn, Felix Willnecker, Alexandru Danciu, Wil-
helm Hasselbring, Christoph Heger, Nikolas Herbst, Pooyan Jamshidi, Reiner Jung,
Joakim von Kistowski, et al. (2015). “Performance-oriented devops: A research
agenda.” In: arXiv preprint arXiv:1508.04752 (cit. on p. 21).

Cheesman, John, John Daniels (2001). “UML components.” In: EUA: Addison-Wesley
(cit. on p. 7).

Danciu, Alexandru, Alexander Chrusciel, Andreas Brunnert, Helmut Krcmar (2015).
“Performance Awareness in Java EE Development Environments.” In: Proc. EPEW ’15,
pp. 146–160 (cit. on p. 22).

Erdweg, Sebastian, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi Bosman,
William R Cook, Albert Gerritsen, Angelo Hulshout, et al. (2013). “The State of the
Art in Language Workbenches.” In: Proc. SLE ’13 (cit. on p. 15).

Fontenot, Michael L. (1989). “Software congestion, mobile servers, and the hyperbolic
model.” In: IEEE Transactions on Software Engineering 15.8, pp. 947–962 (cit. on
p. 14).

73



Bibliography

Franks, Greg, Peter Maly, Murray Woodside, Dorina C Petriu, Alex Hubbard (2005).
“Layered queueing network solver and simulator user manual.” In: Dept. of Systems
and Computer Engineering, Carleton University (December 2005) (cit. on pp. 15, 69).

Franks, Greg, Tariq Al-Omari, Murray Woodside, Olivia Das, Salem Derisavi (2009).
“Enhanced modeling and solution of layered queueing networks.” In: IEEE Transactions
on Software Engineering 35.2, pp. 148–161 (cit. on p. 14).

Frey, Sören, André van Hoorn, Reiner Jung, Wilhelm Hasselbring, Benjamin Kiel (2011).
“MAMBA: A Measurement Architecture for Model-Based Analysis.” In: Department of
Computer Science, University of Kiel, Germany, Tech. Rep. TR-1112, Dec (cit. on p. 70).

Fricke, Ernst, Armin P Schulz (2005). “Design for changeability (DfC): Principles to
enable changes in systems throughout their entire lifecycle.” In: Systems Engineering
8.4 (cit. on p. 6).

Guo, Jianmei, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, Andrzej Wasowski
(2013). “Variability-aware performance prediction: A statistical learning approach.”
In: Proc. ASE ’13, pp. 301–311 (cit. on pp. 20, 70).

Ho, Chih-Wei, Michael J Johnson, Laurie Williams, E Michael Maximilien (2006). “On
agile performance requirements specification and testing.” In: AGILE 2006. IEEE (cit.
on p. 5).

Hoorn, Andre van, Christian Vögele, Eike Schulz, Wilhelm Hasselbring, Helmut Krcmar
(2014). “Automatic Extraction of Probabilistic Workload Specifications for Load Testing
Session-Based Application Systems.” In: 8th International Conference on Performance
Evaluation Methodologies and Tools (ValueTools 2014) (cit. on p. 8).

Horký, Vojtech, Peter Libic, Lukás Marek, Antonín Steinhauser, Petr Tuma (2015).
“Utilizing Performance Unit Tests To Increase Performance Awareness.” In: Proc. ICPE
’15, pp. 289–300 (cit. on pp. 2, 22).

Jain, Raj (1990). The art of computer systems performance analysis: techniques for exper-
imental design, measurement, simulation, and modeling. John Wiley & Sons (cit. on
pp. 27, 29).

Jetbrains MPS. http://www.jetbrains.com/mps (cit. on p. 15).
Johnson, Pontus, Johan Ullberg, Markus Buschle, Ulrik Franke, Khurram Shahzad (2013).

“P2amf: Predictive, probabilistic architecture modeling framework.” In: International
IFIP Working Conference on Enterprise Interoperability. Springer, pp. 104–117 (cit. on
p. 22).

Kang, Kyo C, Sholom G Cohen, James A Hess, William E Novak, A Spencer Peterson
(1990). Feature-oriented domain analysis (FODA) feasibility study. Tech. rep. DTIC
Document (cit. on p. 20).

Kang, Kyo C, Jaejoon Lee, Patrick Donohoe (2002). “Feature-oriented product line
engineering.” In: IEEE software 19.4, p. 58 (cit. on p. 19).

Keller, Fabian (2016a). DECLARE-Project/fastpan v1.0.0. URL: https://doi.org/10.5281/
zenodo.182153 (cit. on pp. 25, 37).

74

http://www.jetbrains.com/mps
https://doi.org/10.5281/zenodo.182153
https://doi.org/10.5281/zenodo.182153


Bibliography

– (2016b). DECLARE-Project/palladio-headless v1.0.0. URL: https://doi.org/10.5281/
zenodo.183038 (cit. on p. 37).

– (2016c). Introducing Performance Awareness in an Integrated Specification Environment
Supplementary Material. URL: https://doi.org/10.5281/zenodo.183057 (cit. on p. 47).

Kolesnikov, Sergiy, Alexander von Rhein, Claus Hunsen, Sven Apel (2013). “A com-
parison of product-based, feature-based, and family-based type checking.” In: ACM
SIGPLAN Notices. Vol. 49. 3. ACM, pp. 115–124 (cit. on p. 20).

Koziolek, Heiko (2008). “Parameter dependencies for reusable performance specifica-
tions of software components.” PhD thesis. Universität Oldenburg (cit. on pp. 6, 7,
15).

– (2010). “Performance evaluation of component-based software systems: A survey.” In:
Perform. Eval. 67.8, pp. 634–658 (cit. on p. 1).

Koziolek, Heiko, Jens Happe (2006). “A qos driven development process model for
component-based software systems.” In: International Symposium on Component-Based
Software Engineering. Springer, pp. 336–343 (cit. on p. 7).

Koziolek, Heiko, Ralf H. Reussner (2008). “A Model Transformation from the Palladio
Component Model to Layered Queueing Networks.” In: Proc. SIPEW ’08, pp. 58–78
(cit. on pp. 34, 36, 38).

Lee, Kwanwoo, Kyo C Kang, Jaejoon Lee (2002). “Concepts and guidelines of feature
modeling for product line software engineering.” In: International Conference on
Software Reuse. Springer, pp. 62–77 (cit. on p. 19).

Menascé, Daniel A (2002). “Two-level iterative queuing modeling of software con-
tention.” In: Modeling, Analysis and Simulation of Computer and Telecommunications
Systems, 2002. MASCOTS 2002. Proceedings. 10th IEEE International Symposium on.
IEEE, pp. 267–276 (cit. on p. 14).

Northrop, Linda, P Clements (2001). “Software product lines.” In: 4.05 (cit. on p. 19).
Palladio Headless Bridge Project. https : / /github . com/DECLARE- Project /palladio -

headless-bridge-mvn (cit. on p. 36).
Petriu, Dorina C, C Murray Woodside (1991). “Approximate MVA from Markov model of

software client/server systems.” In: Parallel and Distributed Processing, 1991. Proceed-
ings of the Third IEEE Symposium on. IEEE, pp. 322–329 (cit. on p. 14).

Reussner, Ralf H, Iman H Poernomo, Heinz W Schmidt (2003). “Reasoning about
software architectures with contractually specified components.” In: Component-Based
Software Quality. Springer, pp. 287–325 (cit. on p. 8).

Szabó, Tamás, Sebastian Erdweg, Markus Voelter (2016). “IncA: A DSL for the definition
of incremental program analyses.” In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, pp. 320–331 (cit. on pp. 22, 71).

Taylor, Richard N, Nenad Medvidovic, Eric M Dashofy (2009). Software architecture:
foundations, theory, and practice. Wiley Publishing (cit. on p. 6).

Tůma, Petr (2014). “Performance Awareness.” In: Proc. ACM/SPEC ICPE ’14. Dublin,
Ireland, pp. 135–136. ISBN: 978-1-4503-2733-6 (cit. on p. 2).

75

https://doi.org/10.5281/zenodo.183038
https://doi.org/10.5281/zenodo.183038
https://doi.org/10.5281/zenodo.183057
https://github.com/DECLARE-Project/palladio-headless-bridge-mvn
https://github.com/DECLARE-Project/palladio-headless-bridge-mvn


Valov, Pavel (2014). “Variability-Aware Performance Prediction: A Case Study.” In: (cit.
on pp. 20, 37, 70).

Van Gurp, Jilles, Jan Bosch, Mikael Svahnberg (2001). “On the notion of variability in
software product lines.” In: Software Architecture, 2001. Proceedings. Working IEEE/IFIP
Conference on. IEEE, pp. 45–54 (cit. on p. 19).

Voelter, Markus (2011). “Language and IDE Development, Modularization and Composi-
tion with MPS.” In: GTTSE. LNCS. Springer (cit. on p. 15).

Voelter, Markus, Daniel Ratiu, Bernd Kolb, Bernhard Schätz (2013). “mbeddr: Instantiat-
ing a language workbench in the embedded software domain.” In: Autom. Softw. Eng.
20.3, pp. 339–390 (cit. on p. 22).

Voelter, Markus, Sascha Lisson (2014). “Supporting Diverse Notations in MPS’Projectional
Editor.” In: GEMOC MoDELS, pp. 7–16 (cit. on p. 15).

Walter, Jürgen, Andre van Hoorn, Heiko Koziolek, Dusan Okanovic, Samuel Kounev
(2016). “Asking What?, Automating the How?: The Vision of Declarative Performance
Engineering.” In: Proceedings of the 7th ACM/SPEC on International Conference on
Performance Engineering. ACM, pp. 91–94 (cit. on pp. 21, 70).

Zhang, Yi, Jianmei Guo, Eric Blais, Krzysztof Czarnecki, Huiqun Yu (2016). “A mathe-
matical model of performance-relevant feature interactions.” In: Proceedings of the
20th International Systems and Software Product Line Conference. ACM, pp. 25–34
(cit. on pp. 20, 70).

fastpan Variability Analyzer Project. https://github.com/DECLARE-Project/fastpan-
variability-analyzer (cit. on p. 37).

All links were last followed on November 10, 2016.

https://github.com/DECLARE-Project/fastpan-variability-analyzer
https://github.com/DECLARE-Project/fastpan-variability-analyzer


Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature


	1 Introduction
	1.1 Motivation
	1.2 Main Goal of the Thesis and Research Questions
	1.3 Summary of Contributions
	1.4 Outline

	2 Foundations and Research Context
	2.1 Component-based Software Engineering
	2.2 Software Performance Prediction
	2.3 JetBrains MPS and the IETS3Project
	2.4 Software Product Lines
	2.5 Declarative Performance Engineering
	2.6 Related Work

	3 Performance Analysis Abstraction
	3.1 Performance Analyzers
	3.2 Performance Analysis Results
	3.3 Variability-aware Performance Analyzers

	4 Introducing Performance Awareness in IETS3
	4.1 Regular Performance Analysis
	4.2 Variability-aware Performance Analysis
	4.3 Tooling Infrastructure and Integration
	4.4 Performance Awareness in IETS3

	5 Model-to-Model Transformation
	5.1 Transformation Overview
	5.2 Basic Transformation
	5.3 Supporting SimTriggers

	6 Quantitative Evaluation
	6.1 Linear Evaluation
	6.2 Simianviz Evaluation

	7 Conclusions and Future Work
	7.1 Summary and Discussion
	7.2 Future Work

	Bibliography

