
Scalable Multicast Concepts
Fabian Keller

University of Stuttgart
Email: hello@fabian-keller.de

Abstract—There are many use cases where applied multicast
concepts can have a huge impact on application performance.
Especially in data centers huge amounts of data can be trans-
ferred through the network using multicast techniques. The
problem with multicast is scalability - routers have to keep
track of multicast forwarding states and often can’t handle huge
amounts of multicast groups. In this paper we examine different
approaches enhancing the overall performance of multicast and
compare them to each other. First we are going to look at
tree-building multicast algorithms like REUNITE operating from
routers. Another approach is injecting the multicast logic into the
sender right beneath the application layer like DR. MULTICAST
does. Lastly we examine how multicast can be easily approached
with software defined networking.

I. INTRODUCTION TO IP MULTICASTING

IP multicast (IPMC) is a protocol for sending IP datagrams
to a set of hosts identified by a sole IP address and was first
introduced in RFC-1112 by S. Deering. A host can join and
leave a multicast group at any time - a multicast group can
even be empty. Sending a datagram to a multicast group
means sending the datagram to all joined hosts. In contrast to
unicast where the sender sends the datagram at least once for
each receiver, the datagram is being replicated on the route
to the joined hosts. It is trivial to see that this approach can
save a lot of bandwidth when sending the same datagram to
many hosts.
IPMC defaults to a IP time-to-live (TTL) for all multicast
packets of 1. This means that multicast is restricted to a
single network by default (see Fig. 1). For inter-networked
multicasting ”multicast routers” take care of forwarding the
packets. Routing between multicast routers is a difficult
task and its scalability is the main focus of this paper. This
chapter introduces IPMC as described in [1] to provide a
basic comprehension for the topic and point out the problem
we focus before we will examine multicast routing in the
following chapters.

A. Multicast Group Management

In order to support various multicast groups it is necessary
to keep track of the hosts membership to the groups. Therefore
the IP service interface provides two group management
operations:

JoinHostGroup(group-address, interface)
LeaveHostGroup(group-address, interface)

Both operations require a specific multicast group address

Multicast Router

Host 1 Host 2 Host . . .

Fig. 1. Network topology in which IPMC is defined. IPMC does not describe
multicast forwarding between multicast routers.

and a network interface, as listening to a multicast group is
specific to a network interface of the data link layer even
though multicast takes place in the transport layer. The IPv4
multicast group addresses range from 224.0.0.0 through
239.255.255.255 [1], whereas IPv6 multicast groups use the
address prefix ff00::/8 [2]. After a host joins a multicast
group the IP module adds the group address to its list of
group memberships. Hence when a host leaves a multicast
group the group address is being removed from that list.
The router connecting the hosts does not keep track of which
host has joined which group, it only keeps track of which
groups have been joined by all connected hosts. Using the
Internet Group Management Protocol (IGMP) the router
keeps sending a Query message for every multicast group
periodically to all connected hosts in order to determine if at
least one host has joined the group. A host receiving a Query
replies after a randomly chosen delay D less than 10 seconds
with a Report message stating whether the host is still joined
to the group or not. The report is destined to the group
address being reported and thus also is a multicast message
staying in the same network, as the TTL of the report packet
is fixed to 1 [1]. When other hosts waiting for their random
delay to time out receive such a report they quietly stop
their timer and do not send a report. For the multicast router,
receiving a single report is enough information to know that
there are still joined hosts in the network. This behaviour
prevents flooding the multicast network with unnecessary
Report and Query traffic.

B. Sending Messages to a Multicast Group

A source can send a datagram to a multicast group as easy
as if it was sending in unicast mode; the only difference is

that the IP destination address has to be a multicast group
address. As IPMC is not a reliable communication method
no Internet Control Message Protocol (ICMP) messages (e.g.
Time Exceeded, Destination Unreachable) are returned from
receivers.
To improve performance of multicast transmissions it is pos-
sible to map multicast group addresses to certain network
addresses (e.g. Ethernet addresses). For IPv4 multicast in
Ethernet the 23 low-order bits of the multicast group IP
address are added to the Ethernet multicast address 01-00-5E-
00-00-00 (hex) leading to tolerated ambiguities as a multicast
group address has 28 significant bits. These ambiguities are
the cause for receiving packets of a group that is not joined
by the receiver on the Ethernet module. When the packets are
passed to the IP module they are discarded, as the IP module
does the actual (and reliable) group filtering. If Ethernet does
not support any filtering at all the filtering would then be done
solely by the IP service.

C. Multicast Routing

We now know that hosts can join and leave multicast
groups within their local network segment using IGMP to
communicate with their multicast router. If the multicast
should go beyond the local network the multicast router
has to forward the packets to other multicast routers. It is
important to prevent cyclic forwarding, as cyclic forwarding
unnecessarily strains bandwidth. Thus it is a goal of all
multicast routing protocols to have a cycle-free forwarding
topology while reaching all joined hosts. As tree topologies
are cycle free, it is a common approach to construct a
spanning tree reaching all receivers over the network. Tree
based approaches can now be divided into two categories:
shared-tree algorithms and source-based tree algorithms [7]
which both construct a spanning tree over the network
connecting all receivers.
Source-tree algorithms like Simple Explicit Multicast
(SEM) [9] construct the tree starting with the source as root
node. If there are multiple sources for a single group one
tree has to be constructed for each source. To minimize
calculation overhead shared-tree algorithms like Core Based
Trees (CBT) [3] and REUNITE [8] construct a single tree
and define a fixed entry point, the so called Core Router [3].
Multiple sources can now send to the network by sending to
the Core Router which takes care of forwarding to all joined
receivers.

D. Scalability Concerns

Scalability is a term that can be construed in various differ-
ent ways. In order to talk about scalability of IP multicast we
need to exactly define what scalability is. A lot of research has
been done on multicast algorithms that scale for a specific use
case. Until today there is no overall solution to scalability, but
different algorithms scale better under certain circumstances
than others. The following aspects define the term ”scalability”
considering multicast concepts in this paper:

1) The number of joined receivers

2) The number of sources
3) The number of routers in a minimal spanning tree

connecting all receivers
4) The number of different multicast groups within the

same set of receivers
5) The frequency of join/leave operations
6) The frequency of data transmission through multicast

Scaling aspects 1) through 4) means directly increasing the
number of Multicast Forwarding Table (MFT) entries in the
multicast routers. To tackle this problem it is a common
approach to reduce multicast states. Multicast Tunneling with
Branch Filtering (MTBF) [6] aggregates similar multicast
forwarding entries to a single entry to decrease the number
of entries in the MFT. Distributed Core Multicast (DCM) [4]
decentralizes routers with lots of multicast groups passing
through, e.g. ingress and egress routers of a backbone network,
by tunnelling between multiple ingress and egress routers and
keeping the multicast state only in them [5]. REUNITE [8]
and SEM [9] eliminate forwarding states in non-branching
routers, as non-branching routers only need to know their
previous and next neighbour router. In contrast to the pre-
vious algorithms, Dr. Multicast [11] intercepts all IPMC calls
and modifies/optimizes them based on administrator-specified
policies.
Scaling aspect 5 triggers tree maintenance operations fre-
quently, as joining or leaving a group modifies the constructed
forwarding tree. Various algorithms tend to optimize traffic
forwarding by constructing a highly sophisticated and opti-
mized forwarding tree, but maintaining the tree can become
very expensive.
Scaling aspect 6 shows how scalable the forwarding of the
packets itself is. Packets have to be examined and replicated
in branching routers. Depending on how often this has to be
done on the way to the receivers this can have an impact on
latency.

E. Paper Roadmap

Brevity prevents us to go into detail for all mentioned
algorithms. In section II we are going to examine SEM and
REUNITE - two different approaches to reduce the multicast
forwarding state. The key difference between both algorithms
is that SEM constructs a source based tree whereas REUNITE
constructs a shared tree.
A new approach especially for data centres is to have a
multicast layer between the application layer and the network
layer. The reason for this is that the multicast layer can
optimize group memberships, tree sharing between groups,
multicast address allocation and restrict access to resources
in times of peak traffic. We will discover the approach Dr.
Multicast takes in section III.
In software defined networking (SDN) we have a great advan-
tage over Dr. Multicast: a centralized controller that always
knows every detail of the network topology and its load. In
this approach we use the information given by the controller
to optimize multicast message delivery. The approach also
ensures to be more reliable by giving the ability to easily

S

R

R R

R

R

R

R R

R

Non-branching router
Branching router

S Sender

R Receiver

Fig. 2. The topology represents a sample multicast forwarding tree. Messages
sent by the Sender have to be replicated at all branching routers for the
Receivers to receive them. Non-branching routers just forward the message.

have fall-back trees. In case of node failure the trees can be
switched very quickly to keep packet loss at a minimum. We
will present the design of the controller in section IV.

II. MULTICAST STATE REDUCING ALGORITHMS

A commonly seen multicast situation is shown in Fig. 2.
A single source sends a multicast message to a set of receivers
over a multicast forwarding tree. On the route of the packets
there are a few branching routers which need to know how
to replicate the message. The non-branching routers just keep
forwarding the messages.

A. Simple Explicit Multicast

SEM as described in [9] is a source-based tree construction
algorithm and completely removes multicast forwarding states
in non-branching routers. The key concept behind this is that
all branching routers know their previous branching router and
a list of all the next branching routers. Thus, the branching
routers themselves do not know anything about the non-
branching routers in between. SEM then uses unicast messages
between branching routers to transport data.

1) Joining Multicast Groups: If a receiver R wants to join
a group (S,G) with S being the source and G being the
IPMC group address, the receiver sends a IGMP join message
destined to G. The multicast router of the local network where
R resides intercepts the join message and sends a SEM-specific
join(S,G) message to the source. This router is henceforth
called the Designated Router DR of R. If the DR does not
know the source of the Group G it determines the source using
IGMPv3 [10] which supports source discovery. As soon as the
source receives the join(S,G) message, it adds the address of
the DR to its list of receivers for group G.
In order to stay joined the DR of a set of joined receivers
has to send alive messages to its previous branching router.
The previous router continues sending a new alive message to
its previous router until the alive message recursively reaches
the source. When a DR stops sending alive messages to its
previous branching router a time-out will trigger the previous
branching router to send a leave(S,G,DR) message directly to
the source, which then removes the DR from the list of joined
receivers.

2) Tree Construction: To construct the multicast forwarding
tree the source partitions the list of joined DRs into sublists
Li. The lists according to their next unicast hop router are then
sent to their respective next hop router in a branch(S,G,pB,Li)
message (with the previous branch router pB=S). A router
receiving a branch message partitions the list of DRs the same
way and either forwards the branch message if there is only
one partition, or it replaces the previous branching router pB
with itself and sends it to the corresponding next hop routers.
A router extracting multiple partitions from the list of DRs now
is a branching router and sends a previous branch message to
the previous branching router. As non-branching routers have
simplify forwarded the branch message, the address of the
previous branching router can be easily determined. When a
router receives a previous branch message it knows one of
its next branching routers. As soon as this operation finishes
there is a route from the source to each DR, which can now
be used to send data packets to the group (S,G).

3) Tree Maintenance: As we have already seen above the
source receives a leave(S,G,DR) message as soon as a DR stops
sending alive messages. If the last branching router before
the leaving DR has only two descendants, it afterwards has
to degrade to a non-branching router (only one descendant
left). To fix this the source sends a new branch message after
receiving the leave message and a time-out. This rebuilds the
complete forwarding tree.
When a new receiver joins a group, SEM possibly requires
a new branching router in its forwarding tree. Again, the
source sends a new branch message after receiving the join
message and the same time-out as with leave operations. Due
to the time-out the tree could possibly be in a state in which
forwarding to a subset of the receivers fails. To improve
reliability SEM sends data packets in GXcast mode [9] while
it knows that the tree might be broken and is being rebuilt.

4) SEM Example: Figure 3 illustrates how the SEM pro-
tocol works. A,B,C,D,E and F are all receivers using IGMP

Fig. 3. SEM tree construction. Taken from Ref. [9]

to send a join message to their corresponding DR - B and
C send to R4, D,E and F send to R8 and A sends to
R9. The DRs then send a SEM join(S,G,Rx) message to S
where Rx represents the individual router name. The source
S adds the set of routers to its receivers list. It then sends
a branch(S,G,S,{R4,R8,R9}) to R1. This branch message is
being forwarded hop-by-hop until R3. R3 partitions the list of
DRs and sends two branch messages: branch(S,G,R3,{R4}) to
R4 and branch(S,G,R3,{R8,R9}) to R5. A further partitioning
of the last branch message then occurs at R7. All branching
routers then send a previous branch(S,G,Rx) message to their
corresponding previous branch after finishing the branch oper-
ation, where Rx is the name of the router sending the message:
R3 to S, R4 to R3, R7 to R3, R8 to R7 and R9 to R7.
The forwarding tree is now constructed and S can start sending
data to all receivers. The topology contains 9 routers: 2
branching routers, 3 DRs and 4 non-branching routers. To
join the 6 receivers and to construct the tree, SEM used 6
IGMP join messages, 3 SEM specific join messages, 9 branch
messages and 5 previous branch messages, which is a total of
17 SEM-specific control messages.

B. SEM scalability

Having understood the key concepts of SEM we now have
a quick glance at it’s scalability. We back our considerations
on the analysis of SEM in Ref. [9]. Figure 4 shows an excerpt
of their analysis. Fig. 4a and Fig. 4b show the number of
group members on the horizontal axis and the amount of
transmitted data quantity in the core network in bytes on
the vertical axis. Measurements were taken in the Internet2
topology of the Abilene1 network with 90, 140 and 190
receivers. The P-X lines represent a measuring where X%
of the traffic are transmitted using SEM and the remaining
percentage being transmitted using GXcast. SEM uses GXcast
during tree construction to prevent loss of packets.

1) Scaling the number of joined receivers: Scaling the
number of receivers strongly depends on the network topology.
SEM scales good if there is a large amount of non-branching
routers. In [9] the French internet topology in 2005 was

1abilene.internet2.edu

examined and calculations states that using SEM could reduce
multicast forwarding table size in such a topology of up to
66%. Regarding 4a and 4b the P-100 (pure SEM without
GXcast) scales very good between 90 and 190 receivers, in
fact not a real increase in transmitted data quantity can be
measured. The measurement does not include the traffic being
generated between the DRs and the real receivers.

2) Scaling the number of sources: As SEM has to build
a forwarding tree for every source, it does not scale good at
all for multiple sources. Having n sources for a group G the
branching routers need to maintain n different MFT entries, as
entries are identified by (S,G), which is like having n different
multicast groups.

3) Scaling the number of routers in a minimal spanning
tree connecting all receivers: SEM scales perfectly as long
as additional routers are non-branching routers. They do not
need to have a single multicast table entry for the groups
passing them. On the other hand if we have lots of branching
routers SEM had to send a lot more alive messages over shorter
distances. Thus having a sparse network topology is ideal for
SEM.

4) Scaling the number of different multicast groups within
the same set of receivers: SEM scales linear to the number of
groups as no similar forwarding states are aggregated in the
multicast forwarding tables. Taking 140 receivers in Fig. 4a, a
total of 130bytes ∗ 140 = 18200bytes have to be transmitted
to the receivers. Most of the data replication process happens
between the DR and the real receiver thus with P-100 and
a transmitted data quantity of roughly 1700bytes (taken from
the image) this is a traffic overhead of nearly 10%. Taking into
account that every further multicast group also has an overhead
of 10%, bandwidth limits scaling the number of groups at a
certain point.

5) Scaling the frequency of join/leave operations: Join and
leave operations are the most expensive operations in SEM
as they trigger a complete rebuild of the forwarding tree.
This happens only once in a certain time-out interval, but
sending in GXcast in between imposes a high computation
load on branching and non-branching routers on all routes. In
Fig. 4a and Fig. 4b it is obviously clear that GXcast does not

(a) 130 bytes of transmitted data (b) 1000 bytes of transmitted data

Fig. 4. The transmitted volume in the core network with protocols GXcast and SEM. Fig. 4a and Fig. 4b have been taken from Ref. [9].

scale well. P-0 (pure GXcast) puts roughly 3-4 times more
transmission load on the network than P-100 (pure SEM).

6) Scaling the frequency of data transmission through mul-
ticast: Scaling data transmission has little impact on SEM’s
scalability as forwarding occurs in constant time once the
forwarding tree has been set up. To transmit 130bytes to
140 receivers in Fig. 4a with P-100, an overhead of about
1700bytes is required. As we see in Fig. 4b, to transmit
1000bytes to 140 receivers an overhead of about 11000bytes
is required. The transmitted data

overhead quotient is between 7% and
10% when considering the other group sizes as well.

C. REUNITE

REUNITE [8] is a shared-tree algorithm with multicast state
reduction. Like SEM it distinguishes between branching and
non-branching routers. REUNITE requires to define a root
node which then functions as tree root. This does not have
to be the multicast sender, but with a single sender it stands
to reason to take the sender as root. Additionally, if only a
subset of all routers in the network implement REUNITE it,
will still work properly. Next to that REUNITE supports load
balancing and sender access control.
The key concept is to maintain two tables in all routers. A
multicast control table (MCT) and a multicast forwarding table
(MFT). The MCT is used to store tree state information in the
following format: ((root addr, root port), (dst)). The first tuple
identifies the group and dst is used to store the IP address
of the first receiver that joined the group on that particular
downstream route. The MCT is only used by tree maintenance
and construction operations and therefore, lookups in the
MCT table are only required when evaluating REUNITE
specific control messages. For plain data forwarding only the
MFT table is consulted which holds entries of the following
format: ((root addr, root port), (dst, stale), {(rcv1, alive1),
..., (rcvn, aliven)}). The first tuple again identifies the group
and the second tuple (dst, stale) contains the IP address of

the first receiver that has joined the group on that particular
downstream route. Then a list of all receivers rcvi is stored
to which the router will send replicated messages. The alive
and stale boolean flags store whether the receivers are alive
and whether the route is about to become stale. Due to this
functional difference MCT tables are used in non-branching
routers and MFT tables are used in branching routers.
Furthermore REUNITE uses unicast IP addresses for data
sending and group addressing. The group address is defined
by the tuple (root IP addr, root port number) which prevents
group address interference when using multicast with a large
number of applications over the same network.

1) Joining multicast groups: To join a multicast group, a
receiver R sends a join message destined to the root node.
The first router on the way belonging to the group distribution
tree (either MFT or MCT entries present) intercepts the join
message. If the intercepting router already has a MFT entry it
adds R to the list of receivers obtaining duplicated messages. A
router modifying its MFT entry through a join message always
discards the join message afterwards. Otherwise if the router
has a valid MCT entry for that group the router will discard
the MCT entry and create a corresponding MFT entry setting
dst=R to become a branching router. This happens only if the
dst value in the MCT entry is not equal to the IP address
of the receiver sending the join message. If they are equal,
the receiver sending the join message is already part of the
distribution tree and sends the join message to stay alive. The
root always adds incoming join requests to the list of receiver
in its MFT. In the example in Fig. 5 a) R1 sends a join message
which propagates to the source S as no router on the way has
any MCT entries.

2) Tree construction: Having at least one receiver, the
source starts sending periodic unicast tree messages destined
to each joined receiver found in the MFT. All routers intercept
tree messages. If a router has a MCT entry, it forwards the
tree message. Branching routers with MFT entries replicate

Fig. 5. Illustrates basic REUNITE operations with S being the source and root node. a) R1 joins b) tree message c) R2 joins d) R1 leaves e) stale
tree message, R2 join proceeding to source S f) tree discovers new route to R2 g) Completing leave operation of R1. Taken from Ref. [8].

the tree message for each receiver. If a router has no MCT
entry for (root addr, root port, dst) it creates one setting dst
to the destination of the tree message. In Fig. 5 b) S sends
a tree message destined to R1. As REUNITE uses unicast to
send the messages, the tree message might find a route that
differs from the join message. As data flows through the routes
discovered by tree messages these are ideal routes optimized
by unicast routing.
In Fig. 5 c) R2 sends a join message destined to S. N3
intercepts that message and adds R2 to its list of receivers. Tree
messages sent by the source and destined to R1 are replicated
by N3 and sent to all registered receivers, as the source does
only keep track of a subset of receivers.

3) Tree maintenance: The receivers periodically keep send-
ing join messages destined to the root node and the root node
periodically keeps sending tree messages. If a receiver wants to
leave a group it stops sending join messages. The intercepting
router will notice that and mark the entry in its MFT as not
being alive. In Fig. 5 d) R1 stopped sending the join message

and is marked as not being alive in S.
If a receiver R is not marked as alive, all tree messages
destined to R have a stale bit set. This indicates that the
branch is about to be dropped. As shown in Fig. 5 e) N3
receives a stale tree message and now forwards all incoming
join messages, as its about to be degraded to a non-branching
router. In Fig. 5 f) the source sends a stale tree message
destined to R1 and a normal tree message destined to R2 as
it has received a join message from R2. In Fig. 5 g) the stale
branch has been dropped and a new branch to R2 has been
established. This means that all MFT and MCT tables of N1,
N2 and N3 are empty and that the MCT table of N4 contains
a new entry for the group.
A receivers alive status is set to not alive after a time-out
occurs. Receiving a message from that receiver resets the
time-out. As soon as a receiver is marked as not alive, the
corresponding tree messages will be marked as stale to inform
any receivers not visible to the branching router that the branch
will be dropped. Stale tree messages are sent until a second

time-out expires, then the branch will be dropped.

D. REUNITE scalability in comparison to SEM

In section II-B we examined the scalability of SEM. We are
now going to examine the scalability of REUNITE, compare
it to SEM and explain why they scale different.

1) Scaling the number of joined receivers: Scaling the
number of joined receivers also mainly depends on the network
topology as group membership is stored across all routers in
the tree. Scaling the topology is discussed below.

2) Scaling the number of sources: REUNITE does not
make any difference having one or multiple sources. Multiple
sources in REUNITE are managed by tunnelling them through
the root node of the forwarding tree. While this node is the
bottle neck of multiple senders, it is the only reliable way
to perform access control. All sources send their messages
to the root node using unicast, which then starts distributing
after successful authentication. This small trade-off concerning
latency has been accepted for having a reliable access control.
Compared to REUNITE, SEM needs an additional MFT entry
in all tree routers for each additional sender. SEM does then
not have a latency as the trees are constructed using the sender
as root node, but requires a lot more MFT entries.

3) Scaling the number of routers in a minimal spanning
tree connecting all receivers: In all non-branching routers
one entry in the MCT of the router has to be installed. In
branching routers an entry for every branch has to be created.
REUNITE also supports the deployment to a mixed topology
with REUNITE aware nodes and not REUNITE aware nodes.
As only unicast messages are used, non REUNITE aware
routers simply forward the messages according to their normal
routing tables, which does not influence the correctness of the
protocol. If the MFT or MCT of a router is overloaded, the
router can pretend to be a non REUNITE aware router and
forward the incoming messages. The message delivery will
still be correct, but not as efficient as it could be. If the root
node was the only REUNITE aware router in the network, it
would send a unicast message to every joined receiver.

4) Scaling the number of different multicast groups within
the same set of receivers: REUNITE cannot share trees
between multiple multicast groups and thus a new multicast
tree has to be constructed for every additional group. If a
router is overloaded with MCT or MFT entries, it behaves
as if it was a non REUNITE aware router for new additional
multicast groups. This leads to a linear and fault tolerant group
scalability.
SEM is not as fault tolerant as REUNITE, but saves entries
in all non-branching routers. Nevertheless the bottleneck of
both algorithms are the branching routers, as for every new
group the branching routes MFT entry count increases by the
number of outgoing branches. All in all, SEM still has a slight
disadvantage as it cannot cope with an overloaded MFT.

5) Scaling the frequency of join/leave operations: As there
is no global node which keeps track of all group memberships,
every receiver has one router in the tree that keeps track
of its group membership. Depending on how the tree was

constructed this could be any router between the designated
router of the receiver and the root node. Join and leave
operations will only affect the branch below that certain node.
In comparison, SEM sends a branch message from the source
down the whole tree after join and leave operations. Therefore
SEM does not require to send tree messages to keep track
of the tree state as only alive messages between branching
routers are exchanged. Join and leave operations are hence
more expensive.

6) Scaling the frequency of data transmission through mul-
ticast: REUNITE uses unicast to deliver multicast data packets
between two branching routers like SEM does. REUNITE
always sends data packets destined to a receiver. All branching
routers on the way intercept data packets and send copies to
the corresponding branches. SEM sends data packets destined
to the next branching router. When a router receives such a
packet, it sends copies to all the next branching routers in the
list. The data forwarding does differ slightly but performance
mainly depends on the implementation, as lookups in the MFT
table are possible in constant time, as no hierarchical lookup
has to be performed.

III. MULTICAST IN DATA CENTRES

The previously mentioned multicast protocols often scale
well in a sparse network topology, having few receivers
scattered over a large topology. This differs in data centres,
as there is a highly linked and dense network topology. Most
multicast algorithms (like SEM and REUNITE) scale quite
well in a sparse environment, but in a dense environment the
amount of non-branching routers decreases drastically. Next to
that, data centres have to scale well with an increasing number
of multicast groups and moreover have to be fault-tolerant.
Especially multicast-storms are the antagonists of a working
data center, which can occur in times of high bandwidth usage.
Receivers might detect a loss of packets and request them
again which fans the embers.
A simple experiment [11] reveals a common bottleneck. Two
computers communicating through various multicast groups
over a single switch. A sender is located on one computer
sending 15.000 packets/s. A receiver is located on the other
computer. As the sender sends packets to twice as many
multicast groups as the receiver receives from, one expects
the receiver to receive 7500 packets/s. Figure 6 shows that
IPMC scales up to 100 joined groups in this simple setup.
After that the packet loss rate starts rising. With 350 joined
groups we reach a packet loss rate of 25%.

A. Introducing Dr. Multicast (MCDC)

MCDC as describe in [11] tackles the problem the following
way: It provides a new sockets.h library in which common IP
multicast methods are overridden by MCDC. The idea behind
this library is to motivate developers to use standard IPMC
operations in their applications. MCDC intercepts all those
calls, optimizes them in the kernel and then sends them to the
network.
A mapping and a library module are the core modules of

Fig. 6. Receiver packet miss rate vs. number of IPMC groups joined. Taken
from Ref. [11].

MCDC. The library module intercepts and modifies the mes-
sages going through the network layer. The mapping module
optimizes multicast usage through various methods as it has
access to a gossip layer which provides health information of
the complete network.
As the mapping module knows the different bottlenecks of the
network and all multicast groups, it can cluster and aggregate
different multicast calls to use a single multicast address.
Moreover it can switch to simple unicast calls for small groups
and use multicast only for large groups. Next to that the
administrator can define a maximum limit of group allocations
dependent on the network capability, he can limit the overall
multicast bandwidth and allow or deny different applications
or hosts to use multicast.
We will now have a look at how the mapping module works
and afterwards consider MCDCs scalability.

B. Mapping Module

The mapping module basically works as a group member-
ship service and as an IPMC address allocation service. It
therefore uses a gossip-based control plane to keep track of
the system state. As the mapping module has to run on every
node, synchronizing the system state across all nodes is the
most important task.
In order to keep a consistent state only a certain node acting
as leader can allocate IPMC addresses. All other nodes only
need a global snapshot in order to map multicast calls to
any group appropriately. Theoretically, any node having a
consistent snapshot of the global state could allocate IPMC
addresses. This is used to increase MCDCs reliability. If the
leader fails, any other node takes control of the leader role.
Again, choosing a new leader node is an administrative task
and thus can be defined by the administrator, but defaults to
using the oldest node in the system.

When group memberships update it is necessary to deploy the
new global state to all nodes. A node does this by maintaining
a global table in which for each node of the system a heartbeat
value is stored. After a time-out of T milliseconds the node sets
its own heartbeat to the current system time and then randomly
selects a node from the system with which it will exchange
the global table. Exchanging is done in a very efficient matter
by hashing the heartbeat values of the two tables and looking
for different hashes. If different hashes are found, an updating
patch is sent to whichever node has the more outdated version.
This way the new global state will eventually propagate
through the whole system, but especially for applications that
require fast group joining it is important to minimize the
latency it takes to update the global table in all nodes in the
network. There are two strategies to reduce the latency, which
also can be configured by the administrator as they sit on top
of the normal gossip propagation. One strategy is to update all
nodes by sending a broadcast message to all nodes with the
required join information. The other strategy is to send unicast
messages to all senders, as the senders addresses can easily
be determined by considering the global table. If the strategies
fail it does not matter, as the gossip layer still operates in the
usual way.

C. Scalability of MCDC

MCDC is a completely different approach compared to SEM
and REUNITE. A key feature of MCDC is to highly optimize
multicast calls instead of optimizing multicast forwarding. In
this section we will point out when MCDC scales good and
when it doesn’t.

1) Scaling the number of joined receivers: Scaling the
number of joined receivers adds a new node for every receiver
to the network and to the global table, which has to be kept in
the memory of each node. According to [11] the global table
of a 1000-node topology can easily be stored within a few
MB of RAM in each node.

2) Scaling the number of sources: As with scaling joined
receivers, scaling sources also increases the global table size.
Nevertheless MCDC automatically optimizes resource usage
by the senders. Frequently addressed multicast groups are
assigned a real IPMC address and the fewer frequent groups
are handled using unicast. MCDC can determine the current
bandwidth usage automatically and adjust the group address-
ing structure on-the-fly to optimize performance.

3) Scaling the number of routers in a minimal spanning tree
connecting all receivers: Scaling the routers does not have
an impact on MCDC at all, because MCDC is located only
in senders and receivers. As MCDC uses multicast addresses
throughout the network it depends on how the routers handle
the multicast protocol, but this is not a direct concern of
MCDC.

4) Scaling the number of different multicast groups within
the same set of receivers: MCDC tackles scaling of multicast
group by aggregating groups intelligently. The algorithm first
creates logical multicast groups called Topics. It tries to group

similar multicast groups into Topics by analysing traffic re-
ports. Afterwards it sorts the Topics by reported traffic size and
node count in descending order and assigns highly trafficked
Topics an IPMC address, while using unicast for the ones at
the bottom of the list.

5) Scaling the frequency of join/leave operations: Scaling
the frequency of join/leave operations is the current bottleneck
of MCDC. With every join/leave operation the global table
in every node has to be updated over the network. Due to
network latency no consistent state can be reached in a node
if join/leave operations occur in less time than it takes for the
gossip layer to synchronize at least two nodes. With more
and more nodes the gossip layer will take even longer to
synchronize and using the alternate strategies to decrease join
latencies should be handled with care as that has an impact
on overall network utilization.

6) Scaling the frequency of data transmission through mul-
ticast: Due to its optimization algorithms MCDC uses the
exact capability of the network hardware.

IV. MULTICAST IN SOFTWARE DEFINED NETWORKING

Using software defined networking (SDN) we can leverage
the approach MCDC (see Section III-A) takes: by centralizing
tree optimization. Next to tree optimization an important
aspect is to be more fault tolerant and reliable as in IP-based
solutions. With SDN it is easy to compute and install multiple
redundant and fallback multicast trees.
In this section we will explain a method as seen in [12]
to implement an IP multicast network using an OpenFlow
Controller. The controller supports multiple trees with fast
tree switching, so that the receivers never receive duplicate
packets. As we will see, also the packet loss is very minimal
when switching the tree. We will also present architectural
decisions which boost the overall performance of the controller
and enable to react quickly to join and leave operations.

A. Using Multiple Trees for a Single Multicast Group

A problem by using two multicast trees is that receivers
might receive duplicate packets, as distinguishing between the
two trees is not a trivial task. Therefore we introduce a tree
ID, which is unique for a tree within a single group. All data
packets traversing over a certain tree carry the tree ID.
Now we can create different delivery trees and install the flows
in the appropriate switches. To switch the delivery tree fast
and without packet loss, it is required to install all flows of
the new tree, except the one in the switch to which the source
is connected. After ensuring that all flows are installed the last
flow can be deployed to the source, which then uses the new
tree straight away. As the old tree is still intact no packages
are lost nor duplicated. After the new tree is in use, the old
tree can safely be removed if not in use any more.
This also enables us to prevent a large loss of packets through
a single point of failure. Multiple trees can be computed and
set up according to the above technique. An occurring failure
is being reported to the controller as soon as it is detected. If
the failure is not part of the alternative tree, the controller can

Fig. 7. An architectural overview of the OpenFlow controller. Taken from
Ref. [12]

deploy a single flow into the source switch and the new tree
works immediately. According to the experiments in [12] it
takes few milliseconds for the whole procedure and the packet
loss in that time is very low. Depending on the packet rate and
the speed of error delivery, results may vary. This also opens
an easy way for load balancing at peak traffic, if a switch is
overstrained.

B. Controller Architecture

In this section we will explain what the different modules
of the OpenFlow controller, as seen in Figure 7, are used for.
The Switch Daemons are a simple wrapper to communicate
with the networking hardware through the OpenFlow standard.
TCP connections to the switches are used to gather relevant
information in the controller. Through these the Topology
is discovered and all IGMP messages are forwarded to the
Sender management and the Receiver management modules
of the Multicast Controller. Incoming join and leave messages
trigger the multicast tree computation if the state of a receiver
changes.
The multicast tree computation and management module is

a highly sophisticated module for efficient tree construction.
The key idea is to cache constructed trees, as constructing
is an expensive task. Dijkstra’s algorithm has to create a
tree covering all the switches regardless of whether they
are used or not. Having a cached version of the tree now
allows to mark each switch as used or unused. When a group
membership change occurs, the switches in which changes
have to be applied can easily be determined and the module
only deploys a patch rather than redeploying the whole tree.
This reduces required control messages, minimizes packet loss
and is quicker.
As seen in Fig. 8 a) the Controller stores a cached tree with

Fig. 8. Visualizes how the multicast tree computation and management
module determines the patch to update the flows in the network using the
cached tree. (a) One receiver at OFS4 (b) A second receiver at OFS6. Taken
from Ref. [12]

Receiver 1 joined to the multicast group. When a join message
of Receiver 2, connected to OFS6, reaches the Controller
it can quickly determine the required flows to establish by
starting at OFS6 and following the tree branch to the root
node until a used switch is found. As the link between OFS4
and OFS6 is marked as unused, the controller knows to install
a forwarding flow in OFS4 and to install a flow in OFS6 which
forwards the multicast messages to the local network of OFS6,
where Receiver 2 is located in. After the patch is installed, the
Controller marks the link between OFS4 and OFS6 and OFS6
itself as used for further calculations as seen in Fig. 8 b).
The multicast tree switching module is enhancing the relia-
bility of the network. Using the multicast tree computation
it ensures to have an installed fall-back tree. As soon as the
topology reports a port or link down it ensures that the fall-
back tree is deployed. Therefore it determines the affected
groups and checks if the fall-back tree is not affected by
the problem. If so, it installs the new according flows in the
switches to which the senders are connected to.
To further optimize message delivery, the controller assigns an
Ethernet address to each tree. The address is of the following
format: 03:00:01:00:[First octet of multicast address]:[tree ID].
The sender continues to send messages to the multicast address
and the switch where the sender is connected to rewrites the
packets Ethernet destination address. The packet can now be
transmitted through the network with maximum performance,
as very little lookups have to be made for Ethernet address
routing. The last switch before the sender reverts the changes
and sends the multicast packet to its local subnet.

C. Scalability of the SDN Approach

Compared to MCDC, SDN has the great advantage of being
more centralized. Retrieving metrics of the whole topology
is included in the OpenFlow standard. Therefore it is not
necessary for the SDN approach to implement a control plane
that keeps gathering information, as it is already present in an
efficient manner. Moreover SDN does not have the problem
of synchronizing the global state within all the nodes, as
trees are computed and maintained centrally by the controller.
In SDN, routing tables can easily be customized to express

the intention of the controller in a perfect way. With former
network hardware the application had to instead adjust their
messages to how the network behaves as the application had
no influence on it. This is the main reason why the scalability
of MCDC and the SDN approach differ a lot, as we will see
in the following considerations.

1) Scaling the number of joined receivers: Scaling the
number of joined receivers depends on how good they can
be aggregated by the controller. Each switch that sends to a
receiver has to store at least one flow. If we connect multiple
receivers to one switch, it still has to store one flow only, as
the switch can use IPMC to deliver the packet to all connected
receivers.

2) Scaling the number of sources: As with the number of
joined receivers, every switch that has a connected multicast
source requires one flow entry per group to be installed. If
multiple sources are in the subnet, the switch still processes
all messages of the senders, as they are destined to an IPMC
address.

3) Scaling the number of switches in a minimal spanning
tree connecting all receivers: Scaling the number of switches
is not a problem at all. For a single group, branching switches
require one flow entry for every branch and non-branching
switches require one flow to forward incoming messages. As
the messages are mapped to Ethernet addresses processing
time in the switches is also at a minimum level and cannot be
faster than in usual networking topologies.
OpenFlow supports group entries as of version 1.3.0 [13].
Group entries allow us to use a single entry for multicast
forwarding in branching routers by using action buckets (a
set of ordered actions).

4) Scaling the number of different multicast groups within
the same set of receivers: Every multicast group has at least
one designated logical tree in the network. Having n groups
within the same set of receivers requires n times as much flow
entries as for a single group (assuming the tree generation
algorithm is deterministic). If every group also has a backup
tree, the flow count would double (but not necessarily in
the same switches). Thus, scalability mainly depends on how
many flow entries are supported by the switch (common
switches easily support 100.000 flow entries). Overall, flow
entries scale linear to the group count.

5) Scaling the frequency of join/leave operations: The
presented controller has an optimized way of handling join
and leave operations by storing a tree for the whole topology
and looking up required branches for the current set of joined
hosts. Leaving or joining is then a task of looking at a single
branch in a tree. Starting with the node where the join or
leave occurred and proceeding to the root. If a join occurred,
every switch that is marked as unused on the way will now
be marked as used and the appropriate flow will be installed.
If a leave occurred, every switch that is marked as used and
has no other receivers left can be marked as unused and the
flows can safely be removed from the switches. In the worst
case for a join operation, the controller had to go through all
switches in the network (tree degraded to a linear list), but

TABLE I
THIS TABLE GIVES A BRIEF OVERVIEW OF ALL EXAMINED MULTICAST ROUTING APPROACHES IN THIS PAPER, WHEN SCALING THE DIFFERENT

SCALABILITY ASPECTS INTRODUCED IN SECTION I-D.

1) The number of joined receivers 2) The number of sources 3) The number of routers in a minimal
spanning tree connecting all receivers

SEM The source has to maintain a list of all
joined receivers.

SEM uses source-based trees. Having n
sources for a group requires maintaining
n multicast trees in the MFT of all
branching routers.

No entries are kept in non-branching
routers, but an entry in the MFT is
created for each branch in a branching
router.

REUNITE Group membership of receivers is stored
across all routers in the tree.

As packets sent by multiple sources are
all tunnelled through the root node, the
root node clearly is the bottleneck.

REUNITE stores one entry in the MCT
of non-branching routers and an entry in
the MFT for every branch in branching
routers, but provides a method to cope
with overloaded tables.

Dr. Multicast Every receiver has to keep a synchro-
nized version of the global table. Scal-
ing the receivers exacerbates fast table
synchronization.

Every sender has to keep a synchronized
version of the global table. Scaling the
senders exacerbates fast table synchro-
nization.

No information has to be kept in routers,
thus this is totally indifferent to MCDC.

SDN Needs exactly one group entry in all
switches of the spanning tree. The con-
troller maintains group membership.

The switch where the source is con-
nected to needs one additional flow en-
try for the source.

Branching and non-branching routers
need exactly one group entry for mul-
ticast operations.

4) The number of different multicast
groups within the same set of receivers

5) The frequency of join/leave opera-
tions

6) The frequency of data transmission
through multicast

SEM SEM does not aggregate forwarding
states of different groups and thus scales
linear to the number of groups.

After join/leave operations the source
sends a branch message to rebuild
the whole tree. While rebuilding, SEM
sends multicast packets through GXcast.

Packets are sent using unicast com-
munication between branching routers,
which then replicate the packet for every
branch.

REUNITE REUNITE does not aggregate forward-
ing states of different groups and thus
scales linear to the number of groups.

Join and leave operations only affect the
branch below the router in which the
group membership state of the affected
receiver is kept.

REUNITE uses unicast packets destined
to the receivers, which are intercepted
by branching routers and replicated for
their branches.

Dr. Multicast MCDC can aggregate multicast groups
and uses multicast for large groups and
unicast for small groups.

MCDC needs to synchronize the global
table in all nodes after join and leave
operations which is a very time and
bandwidth consuming process.

MCDC optimizes data transmission
through its various algorithms and reacts
to changing demands on-the-fly.

SDN The controller does not aggregate any
multicast groups, thus we need one ad-
ditional group entry in every switch for
every group.

The controller implements a sophisti-
cated caching mechanism to efficiently
recompute trees.

Supports very fast routing due to the
mapping to Ethernet addresses. The
limit is the bandwidth of the network.

this still remains in linear complexity. If for every switch the
number of joined receivers is stored in a way, that the number
can be looked up in constant time, this also is true for the
leave operation.

6) Scaling the frequency of data transmission through mul-
ticast: The limit for scaling the data transmission is limited
by the bandwidth of used hardware as forwarding in SDN
switches is very fast due to the mapping to Ethernet addresses.

V. CONCLUSION

In this paper we examined different approaches to multicast
routing concerning their scalability. The presented algorithms
were invented to solve a particular problem in a particular
use case. While performing good in their intended setup, the
algorithms quickly show their downsides when changing the
initial constants. Table I show a brief overview of how and why
the different algorithms scale for the six scalability aspects
defined in section I-D.
SEM and REUNITE are strong and efficient multicast algo-
rithms for sparse networks. They both have a complex tree
creation and maintenance algorithm, but are competitive when

it comes to data delivery. SEM is a good idea for single-
source applications, while REUNITE has a great advantage
for multiple-source applications. Furthermore REUNITE can
be deployed on a mixed topology for incremental deployment
of REUNITE aware routers.
Dr. Multicast is a powerful approach when dealing with lots of
overlapping multicast groups in an existing network. MCDC
does not even require anything to be installed on routers,
instead all senders and receivers use the provided networking
library. The drawback is that the global table has to be
replicated and synchronized between all nodes. When the
group memberships are relatively steady MCDC is a powerful
tool for good load balancing and efficient bandwidth usage.
Thus MCDC is suited best for data centres in dense networks.
The multicast routing approach using software defined net-
working is a highly scalable one. While SDN is still a new
technology the overall performance is magnificent. The largest
drawback is the hardware required to implement a network
with. But when planning a data center or even planning an
upgrade this definitely is the approach that scales best. With
OpenFlow Switch Version 1.3.0 [13] it is even possible to

use only one group entry for multicast forwarding of packets.
As the OpenFlow Controller is still under active development
future versions might enable even better scalability, because
the current Controller already leverages MCDC but does not
provide forwarding state aggregation.
A direction for future works is aggregating various multicast
groups in the OpenFlow Controller and using the same for-
warding tree for multiple groups.

REFERENCES

[1] Deering, S.: Host extensions for IP multicasting. RFC-1112 (1989)
[2] Hinden, R.; Nokia; Deering, S.; Cisco Systems: IP Version 6 Addressing

Architecture. RFC-4291 (2006) 5
[3] Ballardie, A.: Core Based Trees (CBT) Multicast Routing Architecture.

RFC-2201 (1997)
[4] Blazević, L.; Boudec, J.Y.: Distributed Core Multicast (DCM): a multicast

routing protocol for many groups with few receivers. Newsletter ACM
SIGCOMM Computer Communication Review, Volume 29 Issue 5,
October 1999, 6-21.

[5] Wong, T.; Katz, R.: An Analysis of Multicast Forwarding State Scalabil-
ity. Network Protocols, 2000. Proceedings. 2000 International Conference
on (2000) 105-115.

[6] Song, S.; Zhang, Z.L.; Choi, B.Y.; Du, D.: Protocol Independent Multi-
cast Group Aggregation Scheme for the Global Area Multicast. Global
Telecommunications Conference, 2000. GLOBECOM ’00. IEEE (Vol-
ume:1) 370-375.

[7] Minoli, D.: Multicast Addressing for Payload. In: IP Multicast with
Applications to IPTV and Mobile DVB-H pp. 26-38. Wiley-IEEE Press,
ISBN: 9780470260876. (2008)

[8] Stoica, I.; Eugene Ng, T.S.; Zhang, Hui: REUNITE: A Recursive
Unicast Approach to Multicast. INFOCOM 2000, Nineteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings, IEEE (Volume:3) (2000) 1644-1653.

[9] Boudani, A.; Cousin, B.: An hybrid explicit multicast/recursive unicast
approach for multicast routing. Journal Computer Communications, Vol-
ume 28 Issue 16, October 2005, 1814-1834.

[10] Cain, B.; Cereva Networks; Deering, S.; Kouvelas, I.; Cisco Systems;
Fenner, B.; AT&T Labs - Research; Thyagarajan, A.; Ericsson: Internet
Group Management Protocol, Version 3. RFC-3376 (2002)

[11] Vigfusson, Y.; Abu-Libdeh, H.; Balakrishnan, M.; Birman, K.; Tock, Y.:
Dr. Multicast: Rx for Data Center Communication Scalability. EuroSys
’10 Proceedings of the 5th European conference on Computer systems
(2010) 349-362.

[12] Kotani, D.;Suzuki, K.; Shimonishi, H.: A Design and Implementation
of OpenFlow Controller Handling IP Multicast with Fast Tree Switching.
IEEE/IPSJ 12th International Symposium on Applications and the Internet
(2012) 60-67.

[13] Open Networking Foundation: OpenFlow Switch Specification, Ver-
sion 1.3.0, June 25, 2012.

